Why Probability?
Today

- **Probability**
 - Random Variables
 - Joint and Conditional Distributions
 - Inference, Bayes’ Rule
 - Independence

- You’ll need all this stuff for the next few weeks, so make sure you go over it!
Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green

- Sensors are noisy, but we know $P(\text{Color} \mid \text{Distance})$

\[
\begin{array}{cccc}
P(\text{red} \mid 3) & P(\text{orange} \mid 3) & P(\text{yellow} \mid 3) & P(\text{green} \mid 3) \\
0.05 & 0.15 & 0.5 & 0.3
\end{array}
\]

Uncertainty

- General situation:
 - **Evidence**: Agent knows certain things about the state of the world (e.g., sensor readings or symptoms)
 - **Hidden variables**: Agent needs to reason about other aspects (e.g., where an object is or what disease is present)
 - **Model**: Agent knows something about how the known variables relate to the unknown variables
 - Probabilistic reasoning gives us a framework for managing our beliefs and knowledge
Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - D = How long will it take to drive to work?
 - L = Where am I?

- We denote random variables with capital letters

- Like in a variable in a constraint satisfaction problem, each random variable has a domain
 - R in $\{\text{true}, \text{false}\}$ (often write as $\{r, \neg r\}$)
 - D in $[0, \infty)$
 - L in possible locations

Probabilities

- We generally calculate conditional probabilities
 - $P(\text{on time} \mid \text{no reported accidents}) = 0.90$
 - These represent the agent’s beliefs given the evidence

- Probabilities change with new evidence:
 - $P(\text{on time} \mid \text{no accidents, 5 a.m.}) = 0.95$
 - $P(\text{on time} \mid \text{no accidents, 5 a.m., raining}) = 0.80$
 - Observing new evidence causes beliefs to be updated
Probabilistic Models

- Constraint satisfaction probs:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

- Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
<td></td>
</tr>
</tbody>
</table>

Joint Distributions

- A joint distribution over a set of random variables: \(X_1, X_2, \ldots, X_n\) specifies a real number for each assignment (or outcome):

\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n)
\]

\[
P(x_1, x_2, \ldots x_n)
\]

- Size of distribution if \(n\) variables with domain sizes \(d\)?
- Must obey:

\[
0 \leq P(x_1, x_2, \ldots x_n) \leq 1
\]

\[
\sum_{(x_1, x_2, \ldots x_n)} P(x_1, x_2, \ldots x_n) = 1
\]

- For all but the smallest distributions, impractical to write out
Events

- An event is a set E of outcomes

 $$ P(E) = \sum_{(x_1 \ldots x_n) \in E} P(x_1 \ldots x_n) $$

- From a joint distribution, we can calculate the probability of any event

 - Probability that it’s hot AND sunny?
 - Probability that it’s hot?
 - Probability that it’s hot OR sunny?

- Typically, the events we care about are *partial assignments*, like $P(T=h)$

Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

 \[
 P(T) = \sum_s P(t, s) \\
 P(W) = \sum_t P(t, s)
 \]

- $P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$
Conditional Distributions

- Conditional distributions are probability distributions over some variables given fixed values of others.

Conditional Distributions

| $P(W|T = hot)$ | $P(W|T = cold)$ |
|----------------|-----------------|
| W | P |
| sun | 0.8 |
| rain| 0.2 |
| W | P |
| sun | 0.4 |
| rain| 0.6 |

Joint Distribution

<table>
<thead>
<tr>
<th>$P(T, W)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>hot</td>
</tr>
<tr>
<td>cold</td>
</tr>
<tr>
<td>cold</td>
</tr>
</tbody>
</table>

A simple relation between joint and conditional probabilities

- In fact, this is taken as the definition of a conditional probability.

$$P(a|b) = \frac{P(a, b)}{P(b)}$$

Diagram:

- $P(a, b)$
- $P(a)$
- $P(b)$

- $P(W = r|T = c) = ???$
Normalization Trick

- A trick to get a whole conditional distribution at once:
 - Select the joint probabilities matching the evidence
 - Normalize the selection (make it sum to one)

<table>
<thead>
<tr>
<th>T</th>
<th>W</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>sun</td>
<td>0.4</td>
</tr>
<tr>
<td>hot</td>
<td>rain</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>sun</td>
<td>0.2</td>
</tr>
<tr>
<td>cold</td>
<td>rain</td>
<td>0.3</td>
</tr>
</tbody>
</table>

\[P(T, r) \]

Select

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.1</td>
</tr>
<tr>
<td>cold</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Normalize

<table>
<thead>
<tr>
<th>T</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>hot</td>
<td>0.25</td>
</tr>
<tr>
<td>cold</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Why does this work? Because sum of selection is \(P(\text{evidence}) \! \)

\[P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)} \]

The Product Rule

- Sometimes have a joint distribution but want a conditional
- Sometimes the reverse

\[P(x|y) = \frac{P(x, y)}{P(y)} \quad \leftrightarrow \quad P(x, y) = P(x|y)P(y) \]

Example:

\[P(W) \]

\[P(D|W) \]

\[P(D, W) \]
Bayes’ Rule

- Two ways to factor a joint distribution over two variables:
 \[P(x, y) = P(x|y)P(y) = P(y|x)P(x) \]

- Dividing, we get:
 \[P(x|y) = \frac{P(y|x)P(x)}{P(y)} \]

- Why is this at all helpful?
 - Lets us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - Foundation of many systems we’ll see later (e.g. ASR, MT)

- In the running for most important AI equation!

Inference with Bayes’ Rule

- Example: Diagnostic probability from causal probability:
 \[P(\text{Cause}|\text{Effect}) = \frac{P(\text{Effect}|\text{Cause})P(\text{Cause})}{P(\text{Effect})} \]

- Example:
 - m is meningitis, s is stiff neck
 - \[P(s|m) = 0.8 \]
 - \[P(m) = 0.0001 \]
 - \[P(s) = 0.1 \]

\[P(m|s) = \frac{P(s|m)P(m)}{P(s)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008 \]

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?
Let’s say we have two distributions:

- Prior distribution over ghost location: \(P(G) \)
 - Say this is uniform
- Sensor reading model: \(P(R | G) \)
 - Given: we know what our sensors do
 - E.g. \(P(R = \text{yellow} | G=(1,1)) = 0.1 \)
 - For now, assume the reading is always for the lower left corner

We can calculate the posterior distribution over ghost locations given a reading using Bayes’ rule:

\[
P(\ell | r) \propto P(r | \ell) P(\ell)
\]
Inference by Enumeration

- **General case:**
 - Evidence variables: \((E_1 \ldots E_k) = (e_1 \ldots e_k)\)
 - Query variables: \(Y_1 \ldots Y_m\)
 - Hidden variables: \(H_1 \ldots H_r\)

- **We want:** \(P(Y_1 \ldots Y_m | e_1 \ldots e_k)\)

- First, select the entries consistent with the evidence
- Second, sum out \(H\):
 \[
P(Y_1 \ldots Y_m, e_1 \ldots e_k) = \sum_{h_1 \ldots h_r} P(Y_1 \ldots Y_m, h_1 \ldots h_r, e_1 \ldots e_k | X_1, X_2, \ldots, X_n)
 \]
- Finally, normalize the remaining entries to conditionalize

- **Obvious problems:**
 - Worst-case time complexity \(O(d^n)\)
 - Space complexity \(O(d^n)\) to store the joint distribution