CIS 471/571: Artificial Intelligence
Fall 2012

Lecture 1: Introduction
9/24/2012

Daniel Lowd
Based on slides by Dan Weld, John DeNero, Dan Klein, Stuart Russell or Andrew Moore

Course Info

Course Website: http://www.cs.uoregon.edu/Classes/12F/cis471/
Instructor: Daniel Lowd (lowd@cs.uoregon.edu)
TA: Pedram Rooshenas (pedram@cs.uoregon.edu)
Book: Russell & Norvig, 3rd Edition
(2nd Edition is okay, too.)
Coursework:
- 4 Programming assignments: 40%
- 3 Written homeworks: 30%
- 1 Final exam: 30%
- Grad students: Short survey paper, 15%

Late Policy

- < 15 minutes late: -5%
- 1 day late: -25%
- 2 days late: -50%
- 3 days late: -75%

In the event of illnesses, emergencies, and exceptional circumstances, contact me as early as possible.

Academic Honesty

Submit your own work:
- Write up homework solutions individually
- Solve programming projects alone (grad students) or in pairs (undergrads)

Follow rules for collaboration:
- No notes (written or electronic) from study groups
- Acknowledge all collaboration

(I have failed students for submitting work that was not their own. It wasn’t fun.)

Today: Introduction and Overview

- What is artificial intelligence?
- What can AI do?
- What is this course?

Sci-Fi AI?

- A depiction of a sci-fi character or AI interface.
What Can AI Do?

Which of the following can be done at present?
- Play a decent game of table tennis?
- Play a decent game of Jeopardy?
- Drive safely along a curving mountain road?
- Buy a week’s worth of groceries on the web?
- Buy a week’s worth of groceries at the Saturday Market?
- Discover and prove a new mathematical theorem?
- Converse successfully with another person for an hour?
- Perform a surgical operation?
- Put away the dishes and fold the laundry?
- Translate spoken Chinese into spoken English in real time?
- Write an intentionally funny story?

Game Playing

“I could feel – I could smell – a new kind of intelligence across the table”
-Gary Kasparov

Question Answering

Driving

Robotics

Everyday AI?
What is AI?

The science of making machines that:

<table>
<thead>
<tr>
<th>Think link people</th>
<th>Think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act like people</td>
<td>Act rationally</td>
</tr>
</tbody>
</table>

Rational Decisions

We’ll use the term rational in a very specific, technical way:
- Rational: maximally achieving pre-defined goals
- Rationality only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the utility of outcomes
- Being rational means maximizing your expected utility

An alternate title for this course might be: Computational Rationality

What About the Brain?

- Brains (human minds) are very good at making rational decisions, but not perfect
- Brains aren’t as modular as software, so hard to reverse engineer!
- "Brains are to intelligence as wings are to flight"
- Lessons learned from the brain: memory and simulation are key to decision making

A (Short) History of AI

- 1940-1950: Early days
 - 1943: McCulloch & Pitts: Boolean circuit model of brain
 - 1950: Turing’s "Computing Machinery and Intelligence"
- 1950—70: Excitement: Look, Ma, no hands!
 - 1950s: Early AI programs, including Samuel’s checkers program, Newell & Simon’s Logic Theorist, Gelernter’s Geometry Engine
 - 1956: Dartmouth meeting: “Artificial Intelligence” adopted
- 1965: Robinson’s complete algorithm for logical reasoning
- 1970—90: Knowledge-based approaches
 - 1969—88: Expert systems industry booms
- 1990—: Statistical approaches
 - Resurgence of probability, focus on uncertainty
 - General increase in technical depth
 - Agents and learning systems... “AI Spring”
- 2000—: Where are we now?

Course Topics

- Part I: Making Decisions
 - Fast search / planning
 - Constraint satisfaction
 - Adversarial and uncertain search
- Part II: Reasoning under Uncertainty
 - Bayesian networks
 - Decision theory
 - Machine learning
- Throughout: Applications
 - Natural language, vision, robotics, games, ...

Designing Rational Agents

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions.

This course is about:
1. General AI techniques for a variety of problem types
2. Learning to recognize when and how a new problem can be solved with an existing technique
Pac-Man as an Agent

Pac-Man is a registered trademark of Namco-Bandai Games, used here for educational purposes.

Agent

Sensors

Actions

Environment

Project 0

- Complete a short tutorial on Python
- Answer two simple problems

DUE:
Thursday (9/27) @ 10:00pm
via Blackboard

Project 1: Search

Goal: Help Pac-Man find his way through a maze
Methods: Uninformed search (DFS, BFS), heuristic search (A*)

Project 2: Multi-Agent Search

Goal: Play Pac-Man!
Methods: Adversarial search, minimax, expectimax, alpha-beta, etc.

Project 3: Reinforcement Learning

Goal: Help Pac-Man learn about the world
Methods: MDPs, value iteration, reinforcement learning

Project 4: Ghostbusters

Goal: Hunt down invisible ghosts
Methods: Bayesian networks, HMMs, particle filtering
To Do

- Look at the course website: http://www.cs.uoregon.edu/Classes/12F/cis471/
- Do the readings
- Do the Python tutorial (P0)