CIS 471: Artificial Intelligence

Constraint Satisfaction

\[
E = (x_1 \lor \neg x_2 \lor \neg x_3) \land (x_1 \lor x_2 \lor x_4)
\]

Slides by Luke Zettlemoyer. Multiple slides adapted from Dan Klein, Stuart Russell or Andrew Moore

What is Search For?

- Models of the world: single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems
Constraint Satisfaction Problems

- Standard search problems:
 - State is a “black box”: arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables X_i with values from a domain D (sometimes D depends on i)
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language
- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: X_{ij}
 - Domains: \{0, 1\}
 - Constraints
 \[
 \forall i, j, k (X_{ij}, X_{ik}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k (X_{ij}, X_{kj}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k (X_{ij}, X_{i+k,j+k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \forall i, j, k (X_{ij}, X_{i+k,j-k}) \in \{(0, 0), (0, 1), (1, 0)\}
 \sum_{i,j} X_{ij} = N
 \]
Example: N-Queens

- **Formulation 2:**
 - **Variables:** \(Q_k \)
 - **Domains:** \{1, 2, 3, \ldots N\}
 - **Constraints:**
 - Implicit: \(\forall i, j \) non-threatening\((Q_i, Q_j) \)
 - Explicit: \((Q_1, Q_2) \in \{(1, 3), (1, 4), \ldots\} \)

Example: Map-Coloring

- **Variables:** \(WA, NT, Q, NSW, V, SA, T \)
- **Domain:** \(D = \{\text{red, green, blue}\} \)
- **Constraints:** adjacent regions must have different colors
 - \(WA \neq NT \)
 - \((WA, NT) \in \{(\text{red, green}), (\text{red, blue}), (\text{green, red}), \ldots\} \)
- **Solutions are assignments satisfying all constraints, e.g.:**
 - \(\{WA = \text{red}, NT = \text{green}, Q = \text{red}, \\
 NSW = \text{green}, V = \text{red}, SA = \text{blue}, T = \text{green}\} \)
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles):
 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]
- Domains:
 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 \[\text{alldiff}(F, T, U, W, R, O) \]
 \[O + O = R + 10 \cdot X_1 \]
 \[\ldots \]
Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 - \{1, 2, ..., 9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Example: The Waltz Algorithm

- The Waltz algorithm is for interpreting line drawings of solid polyhedra
- An early example of a computation posed as a CSP

- Look at all intersections
- Adjacent intersections impose constraints on each other
Varieties of CSPs

- **Discrete Variables**
 - Finite domains
 - Size d means $O(d^n)$ complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- **Continuous variables**
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods
 (see cs170 for a bit of this theory)

Varieties of Constraints

- **Varieties of Constraints**
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 $$SA \neq green$$
 - Binary constraints involve pairs of variables:
 $$SA \neq WA$$
 - Higher-order constraints involve 3 or more variables:
 - e.g., cryptarithmetic column constraints
 - **Preferences (soft constraints):**
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We'll ignore these until we get to Bayes' nets)
Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- … lots more!

- Many real-world problems involve real-valued variables…

Standard Search Formulation

- Standard search formulation of CSPs (incremental)

- Let's start with a straightforward, dumb approach, then fix it

- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}
 - Successor function: assign a value to an unassigned variable
 - Goal test: the current assignment is complete and satisfies all constraints
Search Methods

- What does BFS do?
- What does DFS do?

DFS, and BFS would be much worse!
Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 - Only need to consider assignments to a single variable at each step
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e. consider only values which do not conflict previous assignments
 - Might have to do some computation to figure out whether a value is ok
 - "Incremental goal test"
- Depth-first search for CSPs with these two improvements is called backtracking search (useless name, really)
- Backtracking search is the basic uninformed algorithm for CSPs
- Can solve n-queens for n \(\approx 25 \)

Backtracking Search

```python
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return RECURSIVE-BACKTRACKING([], csp)
function RECURSIVE-BACKTRACKING(assignment, csp) returns soln/failure
  if assignment is complete then return assignment
  var ← SELECT-UNASSIGNED-VARIABLE(Variables[csp], assignment, csp)
  for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
    if value is consistent with assignment given CONSTRAINTS[csp] then
      add \{var = value\} to assignment
      result ← RECURSIVE-BACKTRACKING(assignment, csp)
      if result \# failure then return result
      remove \{var = value\} from assignment
  return failure
```

- What are the choice points?
Backtracking Example

Backtracking
Are we done?

Improving Backtracking

- General-purpose ideas give huge gains in speed
- Filtering: Can we detect inevitable failure early?
- Ordering:
 - Which variable should be assigned next?
 - In what order should its values be tried?
- Structure: Can we exploit the problem structure?
Forward Checking

- Idea: Keep track of remaining legal values for unassigned variables (using immediate constraints)
- Idea: Terminate when any variable has no legal values
Are We Done?

Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn't detect more distant failures:

- NT and SA cannot both be blue!
- Why didn't we detect this yet?
- Constraint propagation repeatedly enforces constraints (locally)
Arc Consistency

- Simplest form of propagation makes each arc consistent
 - $X \rightarrow Y$ is consistent iff for every value x there is some allowed y

- If X loses a value, neighbors of X need to be rechecked!
- Arc consistency detects failure earlier than forward checking
- What's the downside of arc consistency?
- Can be run as a preprocessor or after each assignment

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- … but detecting all possible future problems is NP-hard – why?

[arc consistency animation]
Constraint Propagation

Are We Done?
Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the k\(^{th}\) node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)
Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Ordering: Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?
Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?

- Combining these heuristics makes 1000 queens feasible

Propagation with Ordering
Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has \(c \) variables out of \(n \) total
- Worst-case solution cost is \(O((n/c)(d^c)) \), linear in \(n \)
 - E.g., \(n = 80, d = 2, c = 20 \)
 - \(2^{80} = 4 \text{ billion years at 10 million nodes/sec} \)
 - \((4)(2^{20}) = 0.4 \text{ seconds at 10 million nodes/sec} \)

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node's parent precedes it in the ordering
- For \(i = n : 2 \), apply \(\text{RemoveInconsistent}(\text{Parent}(X_i), X_i) \)
- For \(i = 1 : n \), assign \(X_i \) consistently with \(\text{Parent}(X_i) \)
- Runtime: \(O(n \cdot d^2) \)
Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time!
 - Compare to general CSPs, where worst-case time is $O(d^n)$
- This property also applies to logical and probabilistic reasoning: an important example of the relation between syntactic restrictions and the complexity of reasoning.

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c) (n-c) d^2)$, very fast for small c
Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned

- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators *reassign* variable values

- Variable selection: randomly select any conflicted variable

- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with \(h(n) = \) total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns \((4^4 = 256 \text{ states})\)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: \(h(n) = \) number of attacks
Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)

- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values

- Backtracking = depth-first search with one legal variable assigned per node

- Variable ordering and value selection heuristics help significantly

- Forward checking prevents assignments that guarantee later failure

- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies

- The constraint graph representation allows analysis of problem structure

- Tree-structured CSPs can be solved in linear time

- Iterative min-conflicts is usually effective in practice