Search Gone Wrong?

CIS 471/571: Artificial Intelligence

Fall 2012

Heuristic Search

Daniel Lowd

Based on slides from Luke Zettlemoyer, Dan Klein, Stuart Russell and Andrew Moore
Today

- A* Search
- Heuristic Design
- Graph Search

Recap: Search

- Search problem:
 - States (configurations of the world)
 - Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
 - Start state and goal test

- Search tree:
 - Nodes: represent plans for reaching states
 - Plans have costs (sum of action costs)

- Search algorithm:
 - Systematically builds a search tree
 - Chooses an ordering of the fringe (unexplored nodes)
Uniform Cost Issues

- Remember: explores increasing cost contours
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every “direction”
 - No information about goal location

Uniform Cost: Pac-Man

- Cost of 1 for each action
- Explores all of the states, but one
Search Heuristics

- Any estimate of how close a state is to a goal
- Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance
Best First / Greedy Search

Expand closest node first: Fringe is a priority queue

- A common case:
 - Best-first takes you straight to the (wrong) goal

- Worst-case: like a badly-guided DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking

- Like DFS in completeness (finite states w/ cycle checking)
Combining UCS and Greedy

- **Uniform-cost** orders by path cost, or *backward cost* $g(n)$
- **Best-first** orders by goal proximity, or *forward cost* $h(n)$
- **A* Search** orders by the sum: $f(n) = g(n) + h(n)$

Example: Teg Grenager

When should A* terminate?

- Should we stop when we enqueue a goal?

- No: only stop when we dequeue a goal
Is A* Optimal?

- What went wrong?
 - Actual bad goal cost < estimated good goal cost
 - We need estimates to be less than actual costs!

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:
 $$ h(n) \leq h^*(n) $$
 where $h^*(n)$ is the true cost to a nearest goal

- Examples:
 - Coming up with admissible heuristics is most of what’s involved in using A* in practice.
Notation:
- \(g(n) = \) cost to node \(n \)
- \(h(n) = \) estimated cost from \(n \) to the nearest goal (heuristic)
- \(f(n) = g(n) + h(n) = \) estimated total cost via \(n \)
- \(G^* = \) a lowest cost goal node
- \(G = \) another goal node

Proof:
- What could go wrong?
- We’d have to have to pop a suboptimal goal \(G \) off the fringe before \(G^* \)
- This can’t happen:
 - For all nodes \(n \) on the best path to \(G^* \)
 - \(f(n) < f(G) \)
 - So, \(G^* \) will be popped before \(G \)
Properties of A*

Uniform-Cost \[A^* \]

- Uniform-cost expanded in all directions

- \(A^* \) expands mainly toward the goal, but does hedge its bets to ensure optimality

UCS vs A* Contours
Which Algorithm?

- Uniform cost search (UCS):

Which Algorithm?

- A*, Manhattan Heuristic:
Which Algorithm?

- Best First / Greedy, Manhattan Heuristic:

Creating Heuristics

8-puzzle:

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?
8 Puzzle I

- Heuristic: Number of tiles misplaced
- $h(\text{start}) = 8$
- Is it admissible?

<table>
<thead>
<tr>
<th>UCS</th>
<th>TILES</th>
<th>MANHATTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>6,300</td>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>3.6×10^6</td>
<td>227</td>
<td>73</td>
</tr>
</tbody>
</table>

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- $h(\text{start}) = 3 + 1 + 2 + \ldots$
 = 18
- Admissible?

<table>
<thead>
<tr>
<th>TILES</th>
<th>MANHATTAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>39</td>
<td>25</td>
</tr>
<tr>
<td>227</td>
<td>73</td>
</tr>
</tbody>
</table>
8 Puzzle III

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What’s wrong with it?

- With A*: a trade-off between quality of estimate and work per node!

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics

- Often, admissible heuristics are solutions to *relaxed problems*, where new actions are available

- Inadmissible heuristics are often useful too (why?)
Trivial Heuristics, Dominance

- Dominance: $h_a(n) \geq h_c(n)$ if $\forall n : h_a(n) \geq h_c(n)$
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 $$h(n) = \max(h_a(n), h_b(n))$$
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- …
Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn’t bother expanding some nodes (which, and why?)
Graph Search

- Very simple fix: never expand a state type twice

```plaintext
function Graph-Search(problem, fringe) returns a solution, or failure
  closed ← an empty set
  fringe ← Insert(Make-Node(Initial-State[problem]), fringe)
  loop do
    if fringe is empty then return failure
    node ← Remove-Front(fringe)
    if Goal-Test(problem, State[node]) then return node
    if State[node] is not in closed then
      add State[node] to closed
      fringe ← InsertAll(Expand(node, problem), fringe)
  end
```

- Can this wreck completeness? Why or why not?
- How about optimality? Why or why not?

A* Graph Search Gone Wrong

State space graph

- S (h=2)
- A (h=4)
- B (h=1)
- C (h=1)
- G (h=0)

Search tree

- S (0+2)
 - A (1+4)
 - C (2+1)
 - G (5+0)
 - B (1+1)
 - C (3+1)
 - G (6+0)
Optimality of A* Graph Search

Proof:
- Main idea: Argue that nodes are popped with non-decreasing f-scores
 - for all \(n, n' \) with \(n' \) popped after \(n \):
 - \(f(n') \geq f(n) \)
 - is this enough for optimality?
- Sketch:
 - assume: \(f(n') \geq f(n) \), for all edges \((n,a,n')\) and all actions \(a \)
 - is this true?
 - proof by induction: (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!

Consistency

- Wait, how do we know parents have better f-values than their successors?

- Consistency for all edges \((n,a,n')\):
 - \(h(n) \leq c(n,a,n') + h(n') \)
- Proof that \(f(n') \geq f(n) \),
 - \(f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \geq g(n) + h(n) = f(n) \)
Optimality

- **Tree search:**
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)

- **Graph search:**
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)

- Consistency implies admissibility

- In general, natural admissible heuristics tend to be consistent

Summary: A*

- A* uses both backward costs and (estimates of) forward costs

- A* is optimal with admissible heuristics

- Heuristic design is key: often use relaxed problems