DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS

(Working Paper)

Robert Tarjan
Computer Science Department
Stanford University
Stanford, California

Summary

The value of depth-first search or "backtracking" as a technique for solving graph problems is illustrated by two examples. An algorithm for finding the biconnected components of an undirected graph and an improved version of an algorithm for finding the strongly connected components of a directed graph are presented. The space and time requirements of both algorithms are bounded by \(k_1V + k_2E + k_3 \) for some constants \(k_1, k_2, \) and \(k_3 \), where \(V \) is the number of vertices and \(E \) is the number of edges of the graph being examined.

Introduction

Consider a graph \(G \), consisting of a set of vertices \(V \) and a set of edges \(E \). The graph may either be directed (the edges are ordered pairs \((v,w)\) of vertices; \(v \) is the tail and \(w \) is the head of the edge) or undirected (the edges are unordered pairs of vertices, also represented as \((v,w)\)). Graphs form a suitable abstraction for problems in many areas; chemistry, electrical engineering, and sociology, for example. They are also very general structures for storing and retrieving information. Many questions may be asked about graphs; we need the fastest, most economical algorithms to give answers to these questions.

In studying graph algorithms we cannot avoid at least a few definitions. These definitions are more-or-less standard in the literature. (See Harary, for instance.) We shall assume a random-access computer model. If \(f_1, f_2, \ldots, f_n \) are functions of \(x_1, x_2, \ldots, x_n \), we say \(f = (f_1, \ldots, f_n) \) if \[|f(x_1, \ldots, x_n)| \leq k_0 + k_1 |f_1(x_1, \ldots, x_n)| + \cdots + k_n |f_n(x_1, \ldots, x_n)| \] for all \(x_1, \ldots, x_n \) and some constants \(k_0, \ldots, k_n \). If \(R \) and \(S \) are binary relations, \(R^* \) is the transitive closure of \(R \), \(R^{-1} \) is the inverse of \(R \), and \[RS = \{(u,w) | \exists v \in \mathbb{E} \text{ s.t. } (u,v) \in R \text{ and } (v,w) \in S \} \]. If \(G = (V,E) \) is a graph, a path \(p \) is a sequence of vertices \(v \) and edges leading from \(v \) to \(w \). A path is simple if all its vertices are distinct. A path \(p: v \rightleftharpoons w \) is called a closed path. A closed path \(p: v \rightleftharpoons v \) is a cycle if all its edges are distinct and the only vertex to occur twice in \(p \) is \(v \), which occurs exactly twice. The undirected version of a directed graph is the graph formed by converting each edge of the directed graph into an undirected edge and removing duplicate edges. An undirected graph is connected if there is a path between every pair of vertices.

A (directed rooted) tree \(T \) is a directed graph whose undirected version is connected, having one vertex which is the head of no edges (called the root), and such that all vertices except the root are the head of exactly one edge. The relation " \((v,w)\) is an edge of \(T \)" is denoted by \(v \rightarrow w \). The relation \"There is a path from \(v \) to \(w \) in \(T \)\" is denoted by \(v \rightleftharpoons w \). If \(v \rightarrow w \), \(v \) is the father of \(w \) and \(w \) is a son of \(v \). If \(v \rightarrow w \), \(v \) is an ancestor of \(w \) and \(w \) is a descendant of \(v \). If \(v \) is a vertex in a tree \(T \), \(T_v \) is the subtree of \(T \) having as vertices all the descendants of \(v \) in \(T \). If \(G \) is a directed graph, a tree \(T \) is a spanning tree of \(G \) if \(T \) is a subgraph of \(G \) and \(T \) contains all the vertices of \(G \).

Depth-First Search

A technique which has been widely used for finding solutions to problems in combinatorial theory and artificial intelligence, but whose properties have not been widely analyzed is of great value in solving graph problems. This is backtracking, or depth-first search. Suppose \(G \) is a graph which we wish to explore. Initially all the vertices of \(G \) are unexplored. We start from some vertex of \(G \) and choose an edge to follow. Traversing the edge leads to a new vertex. We continue in this way; at each step we select an unexplored edge leading from a vertex already reached and we traverse this edge. The edge leads to some vertex, either new or already reached. Whenever we run out of edges leading from old vertices, we choose some unreached vertex, if any exists, and begin a new exploration from this point. Eventually we will traverse all the edges of \(G \), each exactly once. Such a process is called a search of \(G \).

There are many ways of searching a graph, depending upon the way in which edges to search are selected. Consider the following choice rule: when selecting an edge to traverse, always choose an edge emanating from the vertex most recently reached which still has unexplored edges. A search which uses this rule is called a depth-first search. The set of old vertices with possibly unexplored edges may be stored on a stack. Thus a depth-first search is very easy to program either iteratively or recursively, provided we have a suitable computer representation of a graph.

Definition 1: Let \(G = (V,E) \) be a graph. For each vertex \(v \in V \) we may construct a list containing all vertices \(w \) such that \((v,w) \in E \). Such a list is called an adjacency list for vertex \(v \). A set of such lists, one for each vertex in \(G \), is called an adjacency structure for \(G \).

If the graph \(G \) is undirected, each edge \((v,w)\) is represented twice in an adjacency structure; once for \(v \) and once for \(w \). If \(G \) is directed, each edge \((v,w)\) is represented exactly once: vertex \(w \) appears in the adjacency list of vertex \(v \). A single graph may have many adjacency structures; in fact, each ordering of the edges around the vertices of \(G \) gives a unique adjacency structure, and each adjacency structure corresponds to a unique ordering of the edges at each vertex. Using an adjacency structure for a graph, we can perform depth-first searches in a very efficient manner, as we shall see.

Suppose \(G \) is a connected undirected graph. A search of \(G \) imposes a direction on each edge of \(G \) given by the direction in which the edge is traversed when the search is performed. Thus \(G \) is converted into a directed graph \(G' \). The set of edges which lead to a new vertex when traversed during the search
defines a spanning tree of \(G' \). In general, the arcs of \(G' \) which are not part of the spanning tree interconnect the paths in the tree. However, if the search is depth-first, each edge \((v,w)\) not in the spanning tree connects vertex \(v \) with one of its ancestors \(w \).

Definition 2: Let \(P \) be a directed graph, consisting of two disjoint sets of edges, denoted by \(v \rightarrow w \) and \(v \leftarrow w \) respectively. Suppose \(P \) satisfies the following properties:

(i) The subgraph containing the edges \(v \rightarrow w \) is a spanning tree of \(P \).

(ii) We have \(\rightarrow \subseteq (\rightarrow)^{-1} \), where "\(\rightarrow \)" and "\(\leftarrow \)" denote the relations defined by the corresponding sets of edges.

Then \(P \) is called a **palm tree**. The edges \(v \rightarrow w \) are called the **fronds** of \(P \).

Theorem 1: Let \(P \) be the directed graph generated by a depth-first search of a connected graph \(G \). Then \(P \) is a palm tree. Conversely, let \(P \) be any palm tree. Then \(P \) is generated by some depth-first search of the undirected version of \(P \).

Proof: Consider the program listed below, which carries out a depth-first search of a connected graph \(G \), starting at vertex \(s \), using an adjacency structure of the graph to be searched. The program numbers the vertices of the graph in the order they are reached during the search and constructs the directed graph \((P) \) generated by the search.

```plaintext
begin
  integer i;
  procedure DFS(v,u);
  begin
    NUMBER(v) := i := i+1;
    for w in the adjacency list of v do
      if w is not yet numbered then
        begin
          construct arc \( v \rightarrow w \) in \( P \);
          DFS(w,v);
        end;
      else if NUMBER(w) < NUMBER(v) and \( w \leftarrow u \) then
        construct arc \( v \leftarrow w \) in \( P \);
    end;
  i := 0;
  DFS(s,0);
  end;
```

Suppose \(P = (V,E) \) is the directed graph generated by a depth-first search of some connected graph \(G \), and assume that the search begins at vertex \(s \). Examine the procedure DFS. The algorithm clearly terminates because each vertex can only be numbered once. Furthermore, each edge in the graph is examined exactly twice. Therefore the time required by the search is linear in \(V \) and \(E \).

For any vertices \(v \) and \(w \), let \(d(v,w) \) be the length of the shortest path between \(v \) and \(w \) in \(G \). Since \(G \) is connected, all distances are finite. Suppose that some vertex remains unnumbered by the search. Let \(v \) be an unnumbered vertex such that \(d(s,v) \) is minimal. Then there is a vertex \(w \) such that \(w \) is adjacent to \(v \) and \(d(s,w) < d(s,v) \). Thus \(w \) is numbered. But \(w \) will also be numbered, since it is adjacent to \(w \). This means that all vertices are numbered during the search.

The vertex \(s \) is the head of no edge \(w \leftarrow s \). Each other vertex \(v \) is the head of exactly one edge \(v \leftarrow w \). The subgraph \(T \) of \(P \) defined by the edges \(v \leftarrow w \) is obviously connected. Thus \(T \) is a spanning tree of \(P \).

Each arc of the original graph is directed in at least one direction; if \((v,w)\) does not become an arc of the spanning tree \(T \), either \(v \rightarrow w \) or \(w \rightarrow v \) must be constructed, since both \(v \) and \(w \) are numbered whenever edge \((v,w)\) is inspected and either \(\text{NUMBER}(v) < \text{NUMBER}(w) \) or \(\text{NUMBER}(v) > \text{NUMBER}(w) \).

The arcs \(v \rightarrow w \) run from smaller numbered points to larger numbered points. The arcs \(v \leftarrow w \) run from larger numbered points to smaller numbered points. If arc \(v \rightarrow w \) is constructed, arc \(w \rightarrow v \) is not constructed later because both \(v \) and \(w \) are numbered. If arc \(w \leftarrow v \) is constructed, arc \(v \leftarrow w \) is not later constructed, because of the test "\(w \leftarrow u \)" in procedure DFS. Thus each edge in the original graph is directed in one and only one direction.

Let \(T_u \) be the graph defined by the arcs \(v \leftarrow w \) constructed during execution of \(\text{DFS}(u,_) \). The argument above which shows that \(T \) is a spanning tree also shows that \(T_u \) is a tree rooted at \(u \). Consider an arc \(v \leftarrow w \). We have \(\text{NUMBER}(w) < \text{NUMBER}(v) \).

Thus \(w \) is numbered before edge \((w,v)\) is inspected, and \(v \) is a vertex in \(T \). This means that \(w \rightarrow v \), and \(P \) is a palm tree.

Let us prove the converse part of the theorem. Suppose that \(P \) is a palm tree, with spanning tree \(T \) and undirected version \(G \). Construct an adjacency structure of \(G \) in which all the edges of \(T \) appear before the other edges of \(G \) in the adjacency lists. Starting with the root of \(T \), perform a depth-first search using this adjacency structure. The search will traverse the edges of \(T \) preferentially and will generate the palm tree \(P \); it is easy to see that each edge is directed correctly. This completes the proof of the theorem.

We may state Theorem 1 non-constructively as:

Corollary 2: Let \(G \) be any undirected graph. Then \(G \) can be converted into a palm tree by directing its edges in a suitable manner.

Biconnectivity

The value of depth-first search follows from the simple structure of a palm tree. Let us consider a problem in which this structure is useful.

Definition 3: Let \(G = (V,E) \) be an undirected graph. Suppose that for each triple of distinct vertices \(v,w,a \) in \(v \), there is a path \(p: v \leftarrow w \) such that \(a \) is not on the path \(p \). Then \(G \) is **biconnected**. If, on the other hand, there is a triple of distinct vertices \(v,w,a \) in \(v \) such that \(a \) is on any path \(p: v \leftarrow w \), and there exists at least one such path, then \(a \) is called an **articulation point** of \(P \).

Lemma 3: Let \(G = (V,E) \) be an undirected graph. We may define an equivalence relation on the set of edges as follows: two edges are equivalent if and only if they belong to a common cycle. Let the distinct equivalence classes under this relation be \(E_i \), \(1 \leq i \leq n \), and let \(G_i = (V,E_i) \), where \(V_i \) is the set of vertices incident to the edges of \(E_i \); \(V_i = \{v|E_i \cap ((v,w) \in E)\} \). Then

(i) \(G_i \) is biconnected, for each \(1 \leq i \leq n \).

(ii) \(G_i \) is a proper subgraph of a biconnected subgraph of \(G \).

(iii) Each articulation point of \(G \) occurs more than once among the \(V_i \), \(1 \leq i \leq n \). Each non-articulation point of \(G \) occurs exactly once among the \(V_i \), \(1 \leq i \leq n \).
(iv) The set \(V_i \cap V_j \) contains at most one point, for any \(1 \leq i, j \leq n \). Such a point of intersection is an articulation point of the graph.

The subgraphs \(G_i \) of \(G \) are called the biconnected components of \(G \).

Proof: An exercise for the reader.

Suppose we wish to determine the biconnected components of an undirected graph \(G \). Common algorithms for this purpose, for instance Shirey's\(^2\) and each vertex in turn to discover if it is an articulation point. Such algorithms require time proportional to \(V \cdot E \), where \(V \) is the number of vertices and \(E \) is the number of edges of the graph. A more efficient algorithm uses depth-first search. Let \(P \) be a spanning tree generated by a depth-first search. Suppose the vertices of \(P \) are numbered in the order they are reached during the search (as is done by the procedure DFS above). We shall refer to vertices by their numbers. If \(u \) is an ancestor of \(v \) in the spanning tree \(T \) of \(P \), then \(u < v \). For any vertex \(v \) in \(P \), let \(\text{LOWFT}(v) \) be the smallest vertex in the set \(\{v\} \cup \{w \mid v \rightarrow \cdots \rightarrow w\} \). The following results form the basis of an efficient algorithm for finding biconnected components.

Lemma 5: Let \(G \) be an undirected graph and let \(P \) be a spanning tree formed by directing the edges of \(G \). Let \(T \) be the spanning tree of \(P \). Suppose \(p: v \rightarrow w \) is any path in \(G \). Then \(p \) contains a point which is an ancestor of both \(v \) and \(w \) in \(T \).

Proof: Let \(T_u \) with root \(u \) be the smallest subtree of \(T \) containing all vertices on the path \(p \). If \(u = v \) or \(u = w \) the lemma is immediate. Otherwise, let \(T_{u_1} \) be the subtree containing \(v \), and let \(T_{u_2} \) be the subtree containing \(w \), such that \(u \rightarrow u_1 \) and \(u \rightarrow u_2 \). Since \(T_u \) is minimal, \(u_1 \rightarrow u_2 \). Then \(p \) can only get from \(T_{u_1} \) to \(T_{u_2} \) by passing through vertex \(u \), since no point in one of these trees is an ancestor of any point in the other, while both \(u \rightarrow \cdots \rightarrow u_1 \) and \(u \rightarrow \cdots \rightarrow u_2 \) are traversed. Thus \(u \) is an ancestor of both \(v \) and \(w \), the lemma holds.

Theorem 6: The biconnectivity algorithm requires \(O(V,E) \) space when applied to a graph with \(V \) vertices and \(E \) edges.

Proof: The algorithm clearly requires space bounded by \(k_1 V + k_2 E + k_3 \), for some constants \(k_1 \), \(k_2 \), and \(k_3 \). The algorithm is an elaboration of the depth-first search procedure DFS. During the search, \(\text{LOWFT}(v) \) values are calculated and each edge is placed on a stack as they are traversed; when an articulation point is found the corresponding edges are all on top of the stack. If \((v,w) \in T \) and \(\text{LOWFT}(v) \geq \text{LOWFT}(w) \), then the corresponding biconnected component contains the edges in \(\{u_1,u_2 \mid \{u_1,u_2 \} \in \{(v,w)\} \} \) which are on the edge stack. A single search on each connected component of a graph \(G \) will give us all the biconnected components of \(G \).
each connected component. Thus we need only prove that the biconnectivity algorithm works correctly on connected graphs G.

The correctness proof is by induction on the number of edges in G. Suppose G is connected and contains no edges. G either is empty or consists of a single point. The algorithm will terminate after examining G and listing no components. Thus the algorithm operates correctly in this case.

Now suppose that the algorithm works correctly on all connected graphs with $E-1$ or fewer edges. Consider applying the algorithm to a connected graph G with E edges. Each edge placed on the stack of edges is eventually removed and added to a component since everything on the edge stack is removed whenever the search returns to the root of the palm tree of G. Consider the situation when the first component G' is formed. Suppose that this component does not include all the edges of G. Then the vertex v currently being examined is an articulation point of the graph and separates the edges in the component from the other edges in the graph by Lemma 5.

Consider only the set of edges in the component. If $\text{BICONNECT}(v,O)$ is executed, using the graph G' as data, the steps taken by the algorithm are the same as those taken during the analysis of the edges of G' when the data consists of the entire graph G. Since G' contains fewer edges than G, the algorithm operates correctly on G' and G' must be biconnected.

If we delete the edges of G' from G, we get another subgraph G'' with fewer edges than G since G' is not empty. The algorithm operates correctly on G'' by the induction assumption. The behavior of the algorithm on G is simply a composite of its behavior on G' and on G''; thus the algorithm must operate correctly on G.

Now suppose that only one component is found. We want to show that in this case G is biconnected. Suppose that G is not biconnected. Then G has an articulation point a. Consider the connected components left when a is deleted from the graph. One of them contains all the ancestors of a; one must contain only descendants of a. The component which contains only descendants of a also contains some point v such that $(a,v) \in T$, where T is the spanning tree generated by the search. Since the component containing v has only descendants of a as vertices, it must be true that $\text{LOWP}(v) > a$.

But this is a contradiction, because the articulation point test would have succeeded when vertex a was examined and more than one biconnected component would be generated. This is contrary to the assumption that only one component was found. Thus G must be biconnected, and the algorithm works correctly in this case.

By induction, the biconnectivity algorithm gives the correct components when applied to any connected graph, and hence when applied to any graph.

Strong Connectivity

The biconnectivity algorithm shows how useful the depth-first search can be when applied to undirected graphs. However, when a directed graph is searched in a depth-first manner, a simple palm tree structure does not result, because the direction of search on each edge is fixed. The more complicated structure which results in this case is still simple enough to prove useful in at least one application.

Definition: Let G be a directed graph. Suppose that for each pair of vertices v,w in G, there exist paths $p_1: v \rightarrow w$ and $p_2: w \rightarrow v$. Then G is said to be strongly connected.

Lemma B: Let $G = (V,E)$ be a directed graph. We may define an equivalence relation on the set of vertices as follows: two vertices v and w are equivalent if there is a closed path $p: v \rightarrow v$ which contains w. Let the distinct equivalence classes under this relation be V_i, $1 \leq i \leq n$. Let $G_i = (V_i,E_i)$, where $E_i = \{(v,w) \in E | v,w \in V_i\}$. Then:

1. Each G_i is strongly connected.
2. No G_i is a proper subgraph of a strongly connected subgraph of G.

The subgraphs G_i are called the strongly connected components of G.

Proof: An exercise for the reader.

Suppose we wish to determine the strongly connected components of a directed graph. Purdom and Munro present virtually identical algorithms for solving this problem using depth-first search (although they do not mention this fact explicitly). Purdom claims a time bound of kV^2 for his algorithm; Munro claims $k \max(S(V \log V))$, where the graph has V vertices and E edges. Their algorithm attempts to construct a cycle by starting from a point and beginning a depth-first search. When a cycle is found, the vertices on the cycle are marked as being in the same strongly connected component and the process is repeated. The algorithm has the disadvantage that two small strongly connected components may be collapsed into a bigger one; the resultant extra work in relabeling may contribute V^2 steps using a simple approach, or $V \log V$ steps if a more sophisticated approach is used (see Munro). A more careful study of what a depth-first search does to a directed graph reveals that the extensive relabeling of the Purdom-Munro algorithm may be avoided and an $O(V,E)$ algorithm may be devised.

Consider what happens when a depth-first search is performed on a directed graph G. The set of edges which lead to a new vertex when traversed during the search form a tree. The other edges fall into three classes. Some are edges running from ancestors to descendants in the tree. These edges may be ignored, because they do not affect the strongly connected components of G. Some edges run from descendants to ancestors in the tree; we may call these edges fronds as above. Other edges run from one subtree to another in the tree. These, we call vines. If the vertices of the tree are numbered in the order they are reached during the search, a vine (v,w) always has $\text{NUMBER}(v) > \text{NUMBER}(w)$, as the reader may easily show. We shall denote tree edges by $v \rightarrow w$ and fronds by $v \leftarrow w$, and vines by $v \leftrightarrow w$. Suppose G is a directed graph, to which a depth-first search algorithm is applied repeatedly until all the edges are explored. The process will create a set of trees which contain all the vertices of G, called the spanning forest F of G, and sets of fronds and vines. (Other edges are thrown away.) Suppose the vertices are numbered in the order they are reached during the search and that we refer to vertices by their number. Then we have the following results:

Lemma D: Let v and w be vertices in G which lie in the same strongly connected component. Let u be the highest numbered common ancestor of v and w in F. A spanning forest of G generated by repeated depth-first search. Then u lies in the same strongly connected component as v and w.

117
Proof: Without loss of generality we may assume \(v \leq w \). We prove the lemma by induction on \(v \).

Suppose \(v = 1 \). Then \(w \) is a descendant of \(v \) in \(F \). This is true since the search explores all paths emanating from \(v \). Thus \(u = v \) and the lemma is true, trivially.

Suppose the lemma is true for all \(v < k \). Let \(v = k \). Consider any path \(p: v = w \). If \(p \) contains no vertices \(x < v \), then \(v \) can never be a descendant of \(F \), because \(p \) can never leave the subtree \(F \), and the result holds. Otherwise, let \(x \) be the first point on path \(p \) such that \(x < v \). Vertex \(x \) lies in the same strongly connected component as \(w \), and by the induction hypothesis the highest common ancestor \(u' \) of \(x \) and \(w \) also lies in this component. The descendants of \(u' \) form an interval \((u',u'+1)\) which contains \(x \) and \(w \) and hence contains \(v \). Thus \(u' \) is a common ancestor of \(v \) and \(w \). Vertex \(u \) is a descendant of \(u' \), since \(u \) is the highest numbered common ancestor of \(v \) and \(w \). Thus \(u \) must be in the same strongly connected component as \(v \) and \(w \) since there is a path \(p': u' \rightarrow u = v = w = u' \).

The lemma thus follows by induction. The proof implies that \(v \) and \(w \) actually have a common ancestor in \(F \), which is implicit in the statement of the lemma.

Corollary 10: Let \(C \) be a strongly connected component in \(G \). Then the vertices of \(C \) define a subtree of a tree \(F \), the spanning forest of \(G \). The root of this subtree is called the root of the strongly connected component \(C \).

The problem of finding the strongly connected components of a graph \(G \) thus reduces to the problem of finding the roots of the strongly connected components, just as the problem of finding the biconnected components of an undirected graph reduces to the problem of finding the articulation points of the graph. We can construct a simple test to determine if a vertex is the root of a strongly connected component. If \(v \) is a vertex, let \(\text{LOWFT}(v) \) be defined exactly as before:

\[
\text{LOWFT}(v) = \min\{w \mid w < v \}.
\]

Let \(\text{LOWVINE}(v) = \min\{v, v+1\} \). Then \(v \) is the root of some strongly connected component of \(G \) if and only if \(\text{LOWFT}(v) = v \) and \(\text{LOWVINE}(v) = v \).

Proof: Obviously, if \(v \) is the root of a strongly connected component \(C \) of \(G \), then \(\text{LOWFT}(v) = v \) and \(\text{LOWVINE}(v) = v \), since if \(\text{LOWFT}(v) < v \) or \(\text{LOWVINE}(v) < v \), some proper ancestor of \(v \) would be in \(C \) and \(v \) could not be the root of \(C \).

Consider the converse. Suppose \(u \) is the root of a strongly connected component \(C \) of \(G \), and \(v \) is a vertex in \(C \) different from \(u \). There must be a path \(p: v \rightarrow u \). Consider the first edge on this path which leads to a vertex \(w \) not in the subtree \(T \).

If this edge is a frond we must have \(\text{LOWFT}(v) < v < w \). If this edge is a vine, we must have \(\text{LOWVINE}(v) < w < v \), since the highest numbered common ancestor of \(v \) and \(w \) is in \(C \). Figure 2 shows a directed graph, its \(\text{LOWFT} \) and \(\text{LOWVINE} \) values, and its strongly connected components.

\(\text{LOWFT} \) and \(\text{LOWVINE} \) may be calculated using depth-first search. An algorithm for computing the strongly connected components of a directed graph in \(O(E) \) time may be based on such a calculation. An implementation of such an algorithm is presented below. The points which have been reached during the search but which have not yet been placed in a component are stored on a stack. This stack is analogous to the stack of edges used by the biconnectivity algorithm.

begin
integer \(i \);
procedure STRONGCONNECT(v);
begin
\[\text{LOWFT}(v) := \text{LOWVINE}(v) := \text{NUMBER}(v) := i := i+1; \]
put \(v \) on stack of points;
for \(w \) in the adjacency list of \(v \) do
begin
if \(w \) is not yet numbered then
begin
\text{comment} (v,w) is a tree arc;
\text{STRONGCONNECT}(w);
\text{LOWFT}(v) := \min(\text{LOWFT}(v),\text{LOWFT}(w));
\text{LOWVINE}(v) := \min(\text{LOWVINE}(v),\text{LOWVINE}(w));
end
else if \(w \) is an ancestor of \(v \) do
begin
\text{comment} (v,w) is a frond;
\text{LOWFT}(v) := \min(\text{LOWFT}(v),\text{NUMBER}(w));
end
else if \(\text{NUMBER}(w) < \text{NUMBER}(v) \) do
begin
\text{comment} (v,w) is a vine;
if \(w \) is on stack of points then
\text{LOWVINE}(v) := \min(\text{LOWVINE}(v),\text{NUMBER}(w));
end;
\end
if (\text{LOWFT}(v) = \text{NUMBER}(v)) and
(\text{LOWVINE}(v) = \text{NUMBER}(v)) then
begin
\text{start new strongly connected component;}
\text{number} \(w \) on top of point stack satisfies
\text{NUMBER}(w) > \text{NUMBER}(v) do
\text{delete} \(w \) from point stack and put \(w \) in
\text{current component;}
end;
\end;

\text{begin} \text{STRONGCONNECT}(w); \text{end;}
\end

Theorem 12: The algorithm for finding strongly connected components requires \(O(V,E) \) space and time.

Proof: An exercise for the reader.

Theorem 13: The algorithm for finding strongly connected components works correctly on any directed graph \(G \).

Proof: The calculation of \(\text{LOWFT}(v) \) performed by the algorithm is correct, since it is exactly the same as that performed by the biconnectivity algorithm. We prove by induction that the calculation of \(\text{LOWVINE}(v) \) is correct. Suppose as the induction hypothesis that for all vertices \(v \) such that \(v \) is a proper descendant of \(k \) or \(v < k \), \(\text{LOWVINE}(v) \) is computed correctly. This means that the test to determine if \(v \) is the root of a component is performed correctly for all such vertices \(v \). The reader may verify that this somewhat strange induction hypothesis corresponds to considering vertices in the order they are examined for the last time during the depth-first search process.

Consider vertex \(v = k \). Let \(v \rightarrow w_1 \) and let \(w_1 \rightarrow w_2 \) be a vine such that \(w_2 < v \). The highest common ancestor \(u \) of \(v \) and \(w_2 \) is also the highest common ancestor of \(w_1 \) and \(w_2 \). If \(u \) is not in the
same strongly connected component as \(w_2 \), then there
must be a strongly connected component root on the tree
path \(u \rightarrow w_2 \). Since \(w_2 < v \), this root was dis-
covered and \(w_2 \) was removed from the stack of points
and placed in a component before the edge \(w_1 \rightarrow w_2 \)
is traversed during the search. Thus \(w_1 \rightarrow w_2 \) will
not enter into the calculation of \(\text{LOW VIN E}(v) \). On
the other hand, if \(u \) is in the same strongly con-
nected component as \(w_2 \), there is no component root
\(r = u \) on the branch \(u \rightarrow w_2 \), and \(v \rightarrow w_2 \) will be
used to calculate \(\text{LOW VIN E}(w_2) \), and also \(\text{LOW VIN E}(v) \),
as desired. Thus \(\text{LOW VIN E}(v) \) is calculated correctly,
and by induction \(\text{LOW VIN E} \) is calculated correctly for
all vertices.
Since the algorithm correctly calculates \(\text{LOW VPT} \)
and \(\text{LOW VIN E} \), it correctly identifies the roots of the
strongly connected components. If such a root \(u \) is
found, the corresponding component contains all the
descendants of \(u \) which are on the stack of points
when \(u \) is discovered. These vertices are all on top
of the stack of points, and all are put into a compo-
nent by \(\text{STRONG CONNECT} \). Thus \(\text{STRONG CONNECT} \)
works correctly.

Further Applications

We have seen how the depth-first search method
may be used in the construction of very efficient
graph algorithms. The two algorithms presented here
are in fact optimal to within a constant factor, since
every edge and vertex of a graph must be examined to
determine a solution to one of the problems. (Given
a suitable theoretical framework, this statement may
be proved rigorously.) The similarity between bicon-
nectivity and strong connectivity revealed by the
depth-first search approach is striking. The possible
uses of depth-first search are very general, and are
certainly not limited to the examples presented. An
algorithm for finding triconnected components in \(O(V,E) \)
time may be constructed by extending the biconnec-
tivity algorithm. An algorithm for testing
the planarity of a graph in \(O(V) \) time \[1\] is also
based on depth-first search. Combining the connecti-
ity algorithms, the planarity algorithm, and an
algorithm for testing isomorphism of triconnected
planar graphs, \[5\] we may devise an algorithm to test
isomorphism of arbitrary planar graphs in \(O(V \log V) \)
time. Depth-first search is a powerful technique with
many applications.

Acknowledgments

This research was supported by the Hertz Founda-
tion and the National Science Foundation.

References

[1] Harary, Frank. Graph Theory. Addison-Wesley

[2] Hopcroft, J. and Tarjan, R. "Efficient Algori-
thms for Graph Manipulation." Stanford Computer
Science Department Technical Report No. 207,

for Determining Isomorphism of Planar Graphs.
Information Processing Letters 1 (1971), 32-34.

in \(V \log V \) Steps: Extended Abstract." Stanford Computer Science Department

[5] Hopcroft, J. "An \(N \log N \) Algorithm for Iso-
morphism of Planar Triply Connected Graphs." Stanford Computer Science Department

[7] Munro, Ian "Efficient Determination of the
Strongly Connected Components and Transitive
Closure of a Directed Graph." Department of
Computer Science, University of Toronto, 1971.

[8] Nilson, Nils J. Problem Solving Methods in

University of Wisconsin Computer Sciences
Department, July, 1968.

[10] Shirey, R. W. "Implementation and Analysis of
Sciences Department, June, 1969.

Department Technical Report.

119
Figure 1: A graph and its biconnected components.
(a) Graph.
(b) A palm tree with LOWPT values in [], articulation points marked with *.
(c) Biconnected components.
Figure 2: A graph and its strongly connected components.
(a) Graph.
(b) Corresponding graph generated by depth-first search with
LOWPT, LOWVINE values in [], roots of components marked
with *.
(c) Strongly connected components.