This is the usual open-everything, but no outside help take-home test. Check "Class News", where I will post “frequently asked questions” about the test. Please submit your solutions typed, with this page on top and each problem on a separate sheet.

1. Amortized Complexity of Union – Find
Here we assume that we have a partition of \(n \) elements into disjoint sets, where each set is represented by a tree in which non-root nodes have pointers to their parent nodes.

[5] (i) Prove by induction that subtrees rooted in the children of the root of a binomial tree of order \(k \) are binomial trees of all smaller orders.

[5] (ii) Characterize the structure of subtrees rooted in nodes on the longest path from a root to a leaf of a binomial tree of order \(k \).

[10] (iii) Assume Find with path compression and Union with an arbitrary link of roots. A series of consecutive Union operations involving \(n/2 = 2^k \) elements may result in a binomial tree \(T \) of order \(k \). Set \(i = n/2 \) and repeat the following \(n/2 \) times:

\[
\{ \text{perform Union of } T \text{ and the set } \{i+1\} \text{ resulting in tree } T' \text{ rooted at } i+1; \\
\text{perform Find on the deepest leaf of } T'; \text{ this results in a new tree } T; \text{ } i++ \}
\]

What is the complexity of the above algorithm and what does it tell you about lower bounds on the amortized complexity of this particular implementation of Union-Find?

2. Greedy Algorithms vs. DP
[10] Both the prefix-free code problem (“Huffman’s code”) and the OBST problem (with data in the leaves) strive to minimize the weighted external path length in a tree. Why does a greedy algorithm work for the former but not for the latter?
3. Dynamic Programming

[10] (i) D.E. Knuth observed that the optimal root \(r(1, n) \) of an OBST that includes keys 1, \ldots, \(n \) lies between the optimal roots of the OBST for keys 1, \ldots, \(n-1 \) and the OBST for keys 2, \ldots, \(n \): \(r(1, n-1) \leq r(1, n) \leq r(2, n) \). What consequence, if any, does this observation have for the complexity of the DP construction algorithm?

[10] (ii) Consider an \(n \)-gon on the plane (each of the \(n \) vertices is given by a pair of coordinates) that is convex (the straight line joining any two interior points does not intersect its sides). A triangulation of the \(n \)-gon includes \(n-3 \) diagonals that divide its interior into \(n-2 \) triangular regions. Design an efficient algorithm finding a triangulation of the minimum total weight, where the weight of a triangle is the total length of its sides. (As a warm-up, solve the problem when the weight of a triangle is defined as its area.)

4. Polynomial-time reductions and NP-completeness

[5] (i) Prove that the relation of polynomial-time reduction between decision problems \(\leq_p \) is transitive and reflexive. Is it symmetric?

[5] (ii) Is a pseudopolynomial-time reduction (polynomial as a function of the maximum value of a number in a problem instance) sufficient to prove \(NP \)-hardness? Why?

[5] (iii) Is a polynomial-time non-deterministic reduction sufficient to prove \(NP \)-hardness?

[7] (iv) Assume that there is a polynomial time algorithm CLQ to solve the Clique decision problem:

Instance: A graph \(G \) and an integer \(K \)

Question: Does \(G \) have a completely connected set of \(K \) vertices?

Show how to use CLQ to find a maximum size clique of a given graph in polynomial time.

[8] (v) Show that Clique is NP-complete by polynomial time reduction from VertexCover: Is there a set of \(W \) vertices covering all edges of the given graph \(H \)?