Programming Massively Parallel Processors

Lecture Slides for Chapter 5: CUDA Memories
G80 Implementation of CUDA Memories

• Each thread can:
 – Read/write per-thread registers
 – Read/write per-thread local memory
 – Read/write per-block shared memory
 – Read/write per-grid global memory
 – Read/only per-grid constant memory
CUDA Variable Type Qualifiers

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local</td>
<td>int</td>
<td>local</td>
<td>thread</td>
</tr>
<tr>
<td>device shared</td>
<td>int</td>
<td>shared</td>
<td>block</td>
</tr>
<tr>
<td>device</td>
<td>int</td>
<td>global</td>
<td>grid</td>
</tr>
<tr>
<td>device constant</td>
<td>int</td>
<td>constant</td>
<td>grid</td>
</tr>
</tbody>
</table>

- __device__ is optional when used with __local__, __shared__, or __constant__

- **Automatic variables** without any qualifier reside in a register
 - Except arrays that reside in local memory
Where to Declare Variables?

Can host access it?

- Global: yes
- Constant: yes
- Shared: no
- Local: no
- Register (automatic): yes

Outside of any Function

In the kernel
Variable Type Restrictions

• **Pointers** can only point to memory allocated or declared in global memory:
 – Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 – Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```
A Common Programming Strategy

- Global memory resides in device memory (DRAM) - much slower access than shared memory
- So, a profitable way of performing computation on the device is to tile data to take advantage of fast shared memory:
 - Partition data into subsets that fit into shared memory
 - Handle each data subset with one thread block by:
 - Loading the subset from global memory to shared memory, using multiple threads to exploit memory-level parallelism
 - Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 - Copying results from shared memory to global memory
A Common Programming Strategy
(Cont.)

• Constant memory also resides in device memory (DRAM) - much slower access than shared memory
 – But… cached!
 – Highly efficient access for read-only data

• Carefully divide data according to access patterns
 – R/Only \rightarrow constant memory (very fast if in cache)
 – R/W shared within Block \rightarrow shared memory (very fast)
 – R/W within each thread \rightarrow registers (very fast)
 – R/W inputs/results \rightarrow global memory (very slow)

For texture memory usage, see NVIDIA document.
GPU Atomic Integer Operations

- Atomic operations on integers in global memory:
 - Associative operations on signed/unsigned ints
 - add, sub, min, max, ...
 - and, or, xor
 - Increment, decrement
 - Exchange, compare and swap

- Requires hardware with compute capability 1.1 and above.
Matrix Multiplication using Shared Memory
Review: Matrix Multiplication Kernel using Multiple Blocks

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
How about performance on G80?

- All threads access global memory for their input matrix elements
 - Two memory accesses (8 bytes) per floating point multiply-add
 - 4B/s of memory bandwidth/FLOPS
 - $4 \times 346.5 = 1386$ GB/s required to achieve peak FLOP rating
 - 86.4 GB/s limits the code at 21.6 GFLOPS

- The actual code runs at about 15 GFLOPS

- Need to drastically cut down memory accesses to get closer to the peak 346.5 GFLOPS
Idea: Use Shared Memory to reuse global memory data

- Each input element is read by Width threads.
- Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth
 - Tiled algorithms
Tiled Multiply

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd.
A Small Example
Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P

<table>
<thead>
<tr>
<th>Access order</th>
<th>(P_{0,0})</th>
<th>(P_{1,0})</th>
<th>(P_{0,1})</th>
<th>(P_{1,1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>thread(_{0,0})</td>
<td>(M_{0,0} \times N_{0,0})</td>
<td>(M_{0,0} \times N_{1,0})</td>
<td>(M_{0,1} \times N_{0,0})</td>
<td>(M_{0,1} \times N_{1,0})</td>
</tr>
<tr>
<td>thread(_{1,0})</td>
<td>(M_{1,0} \times N_{0,1})</td>
<td>(M_{1,0} \times N_{1,1})</td>
<td>(M_{1,1} \times N_{0,1})</td>
<td>(M_{1,1} \times N_{1,1})</td>
</tr>
<tr>
<td>(M_{2,0} \times N_{0,2})</td>
<td>(M_{2,0} \times N_{1,2})</td>
<td>(M_{2,1} \times N_{0,2})</td>
<td>(M_{2,1} \times N_{1,2})</td>
<td></td>
</tr>
<tr>
<td>(M_{3,0} \times N_{0,3})</td>
<td>(M_{3,0} \times N_{1,3})</td>
<td>(M_{3,1} \times N_{0,3})</td>
<td>(M_{3,1} \times N_{1,3})</td>
<td></td>
</tr>
</tbody>
</table>
Breaking Md and Nd into Tiles

• Break up the inner product loop of each thread into phases

• At the beginning of each phase, load the Md and Nd elements that everyone needs during the phase into shared memory

• Everyone access the Md and Nd elements from the shared memory during the phase
Each phase of a Thread Block uses one tile from Md and one from Nd.

<table>
<thead>
<tr>
<th>Time</th>
<th>Md0,0</th>
<th>Nd0,0</th>
<th>PValue0,0 +=</th>
<th>Md0,0</th>
<th>Nd0,0</th>
<th>PValue0,0 +=</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0,0</td>
<td>Md0,0</td>
<td>Nd0,0</td>
<td>Mds0,0 * Nds0,0 + Mds1,0 * Nds0,1</td>
<td>Md2,0</td>
<td>Nd0,2</td>
<td>Mds0,0 * Nds0,0 + Mds1,0 * Nds0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Md1,0</th>
<th>Nd1,0</th>
<th>PValue1,0 +=</th>
<th>Md1,0</th>
<th>Nd1,0</th>
<th>PValue1,0 +=</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,0</td>
<td>Md1,0</td>
<td>Nd1,0</td>
<td>Mds0,0 * Nds1,0 + Mds1,0 * Nds1,1</td>
<td>Md3,0</td>
<td>Nd1,2</td>
<td>Mds0,0 * Nds1,0 + Mds1,0 * Nds1,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Md0,1</th>
<th>Nd0,1</th>
<th>PdValue0,1 +=</th>
<th>Md2,1</th>
<th>Nd0,3</th>
<th>PdValue0,1 +=</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0,1</td>
<td>Md0,1</td>
<td>Nd0,1</td>
<td>Mds0,1 * Nds0,0 + Mds1,1 * Nds0,1</td>
<td>Md2,1</td>
<td>Nd0,3</td>
<td>Mds0,1 * Nds0,0 + Mds1,1 * Nds0,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Md1,1</th>
<th>Nd1,1</th>
<th>PdValue1,1 +=</th>
<th>Md3,1</th>
<th>Nd1,3</th>
<th>PdValue1,1 +=</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1,1</td>
<td>Md1,1</td>
<td>Nd1,1</td>
<td>Mds0,1 * Nds1,0 + Mds1,1 * Nds1,1</td>
<td>Md3,1</td>
<td>Nd1,3</td>
<td>Mds0,1 * Nds1,0 + Mds1,1 * Nds1,1</td>
</tr>
</tbody>
</table>

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010, ECE 408, University of Illinois, Urbana-Champaign
Tiled Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
    __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

    int bx = blockIdx.x; int by = blockIdx.y;
    int tx = threadIdx.x; int ty = threadIdx.y;

    // Identify the row and column of the Pd element to work on
    int Row = by * TILE_WIDTH + ty;
    int Col = bx * TILE_WIDTH + tx;

    float Pvalue = 0;
    // Loop over the Md and Nd tiles required to compute the Pd element
    for (int m = 0; m < Width/TILE_WIDTH; ++m) {

        // Collaborative loading of Md and Nd tiles into shared memory
        Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
        Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];
        __syncthreads();

        for (int k = 0; k < TILE_WIDTH; ++k)
            Pvalue += Mds[ty][k] * Nds[k][tx];
        __syncthreads();
    }

    Pd[Row*Width + Col] = Pvalue;
}
```

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010, ECE 408, University of Illinois, Urbana-Champaign
CUDA Code – Kernel Execution Configuration

// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width / TILE_WIDTH,
 Width / TILE_WIDTH);
First-order Size Considerations in G80

- Each **thread block** should have many threads
 - TILE_WIDTH of 16 gives 16*16 = 256 threads

- There should be many thread blocks
 - A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks
 - TILE_WIDTH of 16 gives each SM 3 blocks, 768 threads (full capacity)

- Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 - Memory bandwidth no longer a limiting factor
Tiled Multiply

- Each **block** computes one square sub-matrix $P_{d_{\text{sub}}}$ of size TILE_WIDTH
- Each **thread** computes one element of $P_{d_{\text{sub}}}$
G80 Shared Memory and Threading

• Each SM in G80 has 16KB shared memory
 – SM size is implementation dependent!
 – For TILE_WIDTH = 16, each thread block uses $2 \times 256 \times 4B = 2KB$ of shared memory.
 – The shared memory can potentially have up to 8 Thread Blocks actively executing
 • This allows up to $8 \times 512 = 4,096$ pending loads. (2 per thread, 256 threads per block)
 • The threading model limits the number of thread blocks to 3 so shared memory is not the limiting factor here
 – The next TILE_WIDTH 32 would lead to $2 \times 32 \times 32 \times 4B = 8KB$ shared memory usage per thread block, allowing only up to two thread blocks active at the same time

• Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 – The 86.4B/s bandwidth can now support $(86.4/4) \times 16 = 347.6$ GFLOPS!
Tiled Matrix Multiplication Kernel

`__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)`

1. `__shared__; float Mds[TILE_WIDTH][TILE_WIDTH];`
2. `__shared__; float Nds[TILE_WIDTH][TILE_WIDTH];`
3. `int bx = blockIdx.x; int by = blockIdx.y;`
4. `int tx = threadIdx.x; int ty = threadIdx.y;`

// Identify the row and column of the Pd element to work on
5. `int Row = by * TILE_WIDTH + ty;`
6. `int Col = bx * TILE_WIDTH + tx;`
7. `float Pvalue = 0;`
8. `for (int m = 0; m < Width/TILE_WIDTH; ++m) {`

// Collaborative loading of Md and Nd tiles into shared memory
9. `Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];`
10. `Nds[ty][tx] = Nd[(m*TILE_WIDTH + ty)*Width + Col];`
11. `__syncthreads();`
12. `for (int k = 0; k < TILE_WIDTH; ++k)`
13. `Pvalue += Mds[ty][k] * Nds[k][tx];`
14. `__syncthreads();`
15. `Pd[Row*Width + Col] = Pvalue;`

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2010, ECE 408, University of Illinois, Urbana-Champaign
Tiling Size Effects

![Bar chart showing the effects of different tiling sizes on GFLOPS. The chart compares not tiled, 4x4 tiles, 8x8 tiles, 12x12 tiles, 16x16 tiles, tiled only, and tiled & unrolled configurations. The chart indicates that tiled & unrolled configurations generally perform better than tiled only configurations, with 16x16 tiles showing the highest performance.](chart.png)
Summary - Typical Structure of a CUDA Program

- Global variables declaration
 - __host__
 - __device__... __global__, __constant__, __texture__
- Function prototypes
 - __global__ void kernelOne(…)
 - float handyFunction(…)
- Main()
 - allocate memory space on the device – cudaMemcpy(d_GlblVarPtr, bytes)
 - transfer data from host to device – cudaMemcpy(d_GlblVarPtr, h_Gl…)
 - execution configuration setup
 - kernel call – kernelOne<<<execution configuration>>>(args…);
 - transfer results from device to host – cudaMemcpy(h_GlblVarPtr,…)
 - optional: compare against golden (host computed) solution
- Kernel – void kernelOne(type args,…)
 - variables declaration - __local__, __shared__
 - automatic variables transparently assigned to registers or local memory
 - syncthreads()…
- Other functions
 - float handyFunction(int inVar…);