CIS 122

Final Review
Logistics

- Course Evaluations
 - Fill them out by Wednesday
 - Feedback on lack of textbook

- Assignment 5
 - Some assignments submitted
 - Assignment help after class

- Final times
 - Wednesday 2:00 - 4:00
 - Friday 3:15 - 5:15
Types

- Integers
- Floats
- Strings
- Booleans
- Lists
 - Nested Lists
- Dictionaries
Programming Concepts

- Variables
- Functions
- Conditionals
- Recursion
- Iteration
 - Nested Loops
- Classes
Types - Integers

- **Numbers (without a decimal point)**
 - 1
 - 42
 - -7

- **Integer operations return integer results**
 - 1 + 1 → 2
 - 2 * 3 → 6

- **Watch out for integer division!**
 - 10 / 5 → 2
 - 11 / 5 → 2
Types - Floats

- Numbers (with a decimal point)
 - 1.5
 - 42.0
 - -7.

- Operations involving floats return floats
 - 1 + 1.5 → 2.5
 - 2 * 3.0 → 6.0

- Useful for float division
 - 10 / 5.0 → 2.0
 - 11 / 5.0 / 2.5
Types - Strings

● Sequences of characters (surrounded by quotes)
 ○ 'abc'
 ○ "Hello World"
 ○ '5'

● We can index into them
 ○ "abcdefg"[3] → 'd'
 ○ "abcdefg"[-2] → 'f'

● We can slice them
 ○ "abcdefg"[2 : 5] → 'cde'
 ○ "abcdefg"[3 :] → 'defg'
Types - Strings (new!)

- We can iterate over them

  ```python
  for char in string:
      print char
  
  otherString = ""
  for i in range(len(string)):
      otherString += string[i]
  ```

- We CAN'T modify them (strings are immutable)
 - `string[3] = 'a'
 - `string.append('a')`
Types - Booleans

● Only two values
 ○ True
 ○ False

● Generate from tests (>, >=, <, <=, ==, !=)
 ○ 4 < 5 → True
 ○ 'x' in 'abcde' → False

● Combine with logical connectives (and, or, not)
 ○ True and False → False
 ○ True or False → True
 ○ not True → False
Types - Booleans

- We can use them as conditions

- if, elif, else statements
  ```python
  if x < 5:
      return 1
  else:
      return -1
  ```

- while loops
  ```python
  while x < 5:
      print x
      x += 1
  ```
Types - Lists

- Sequences of arbitrary elements
 - [1, 2, 3]
 - ['a', True, 42]

- We can index into them
 - [10, 20, 30, 40, 50] [2] → 30
 - [10, 20, 30, 40, 50] [-2] → 40

- We can slice them
 - [10, 20, 30, 40, 50] [2 : 4] → [30, 40]
 - [10, 20, 30, 40, 50] [:3] → [10, 20, 30, 40]
Types - Lists

- We can modify them
 - L [2] = 100
 - L.append(100)

- We can iterate over them
  ```
  for b in [True, True, False, True]:
    if b == False:
      return False
  return True
  ```

```python
for i in range(10):
  print(i)
```
Types - Lists

- We can nest them

```python
nestedList = [ [10, 20, 30, 40],
               [11, 21, 31, 41],
               [12, 22, 32, 42],
               [13, 23, 33, 43] ]

nestedList [2] → [12, 22, 32, 42]

nestedList [2][3] → [42]
```
Lists with arbitrary keys
 ○ letterCount = {'a':5, 'b':7, 'c':2}
 ○ sillyDict = {0:0, 1:1, 2:2}

We can index dictionaries by keys
 ○ letterCount ['a'] → 5

We can modify entries in dictionaries (they are mutable)
 ○ letterCount ['a'] = 4
 ○ letterCount ['c'] += 1

We can add elements to dictionaries (they are mutable)
 ○ letterCount['d'] = 3
Types - Collections

- Three collection types
 - Strings
 - Lists
 - Dictionaries

- Can test whether an element is present with `in` keyword
 - `'a' in 'abcde' → True`
 - `5 in [0, 1, 2] → False`
 - `'rabbit' in {'cat':True, 'dog':False} → False`

- Search through keys

- Can get size of collection with `len` function
 - `len([0, 1, 2]) → 3`