CIS 122
Recap
Midterm Details

- Monday July, 18
- 1 Hour
- Study guide on course website
 - Resources page
- You are allowed to bring a note sheet
 - 1 sheet of paper
 - Double sided
Midterm Details

- What should you study?

- Homework assignments
 - Know how they work
 - Know why they work

- Study guide
 - Make sure you're familiar with the terms
 - Know how to use them

- In class quizzes
 - Look them over
 - Slides are all online
Types

- What types have we seen so far?
 - Ints
 - Floats
 - Strings
 - Booleans
 - (don't worry about tuples)
Types - Ints

- Whole numeric values
- Can perform arithmetic operations
 - Addition
 - Subtraction
 - Multiplication
 - Division
- Any integer operation always returns an integer
 - Careful when dividing
 - Always truncates down
Types - Floats

- Fractional numeric values
 - Any number with a decimal point
- Can do anything ints can do
- Any operation involving a float returns a float
 - $5 \div 2 = 2$
 - $5.0 \div 2 = 2.5$
- Need a float fast?
 - Multiply by 1.0
 - $42 \times 1.0 = 42.0$
Types - Strings

● Sequences of characters
 ○ Surrounded by quotes
 ○ "HAPPY BIRTHDAY"

● Not just letters
 ○ Numbers
 ○ Punctuation
 ○ White space

● How long are these strings?
 ○ "Count me!"
 ○ "
 ○ ""
 ○ """
Types - Strings

● What can we do with strings?
 ○ Basic operations

● String addition (concatenation)
 ○ "abc"+"def"

● String multiplication
 ○ "hip " * 3
Types - Strings

- What can we do with strings?
 - String indexing

- \(s[i] \) = \(i \)th character of \(s \) (starting from 0)
 - "abcdef"[3]

- \(s[-i] \) = \(i \)th character from the right (starting from 1)
 - "abcdef"[-3]
Types - Strings

● What can we do with strings?
 ○ String slicing

● \(s[i:j] = \) substring of \(s \)
 ○ Starting from \(s[i] \)
 ○ Up to but not including \(s[j] \)
 ○ "abcdef"[2 : 4] = "cd"

● If we leave out a number, it defaults to the end
 ○ "abcdef"[2 :] = "cdef"
 ○ "abcdef"[: 4] = "abcd"
Types - Booleans

● Only two values
 ○ True
 ○ False

● Comparisons
 ○ 3 <= 4
 ○ 'a' != 'b'

● Boolean logic
 ○ and
 ○ or
 ○ not
Types

- What questions should you expect?
 - Evaluate this expression (as python would)

- Some sample expressions
 - $1 + 2 \times 3$
 - "sequence" [3]
 - $3 < 4$ and True
Variable Assignment

- We can assign values to variables
 - Assignment operator (=)
 - Variable on the left
 - Value on the right

- \(x = 5 \)
- \(\text{myString} = "\text{puppy}" \)
- \(\text{isItRainingToday} = \text{False} \)
Variable Assignment

- Variables can be reassigned
 - New value replaces old value
 - Variables on LHS = names
 - Variables on RHS = values

- $x = 5$
- $x = 6$
- $x = x + 1$
Conditional Logic

● Conditional code execution
 ○ if, elif, else

 if x == 0:
 print "x is zero"
 elif x==1:
 print "x is one"
 else:
 print "I don't know what x is"
What questions should you expect?
 ○ What happens when we run this code?
 ○ What is the value of x afterwards?

x = 0

if x < 0:
 x = x + 1
elif x != 2:
 x = x * 2
else:
 x = 5
Functions

- Function Components
 - Definition
 - Name
 - Arguments
 - Body
 - Docstring
 - Return Value

```python
def plusOne(myNum):
    """Adds one to myNum""
    myLargerNum = myNum + 1
    return myLargerNum
```
Functions

- Function Components
 - Definition
 - Name
 - Arguments
 - Body
 - Docstring
 - Return Value

- def plusOne(myNum):
 """Adds one to myNum"
 myLargerNum = myNum + 1
 return myLargerNum

- What questions should you expect?
 - Tell me what this function does (high level description)
 - Write a function to perform a simple task
 - Stack diagrams
def plusOne(myNum):
 newNum = myNum + 1
 return newNum

def myFunc(x,y):
 z = plusOne(x)
 ans = y*z
 return ans

a = myFunc(2,3)
Recursion

- **Recursive Functions**
 - Just like normal functions
 - Except they call themselves

- **Structure**
 - Base Case
 - Recursive Step

- **What questions should you expect?**
 - Implement this recursive problem
 - I'll give you a base case and recursive step
Turtle

● Importing Modules
 ○ import turtle

● Basic turtle functions
 ○ turtle.forward(dist)
 ○ turtle.backward(dist)
 ○ turtle.left(angle)
 ○ turtle.right(angle)

● What sort of question should you expect?
 ○ Something tied into a previous topic
 ○ I won't ask you to draw a fractal
Tomorrow

- General review session tomorrow
- Bring your own questions
- I'll go over whatever you want to go over