CIS 211

Midterm Review

slides created by Marty Stepp
http://www.cs.washington.edu/143/
revised by Daniel Lowd

Feedback: Good

• Live programming (x10)
• Lectures (x5)
• Examples (x5)
• Assignments (x3)
• Slides/notes (x3)
• Extra credit (x2)

Feedback: Bad

• More discussion of homework in lab (x3)
• More discussion of homework in class (x2)
• Homework instructions are confusing

Tentative Schedule

• Week 6: Midterm review and midterm
• Week 7: GUIs!
• Week 8: Finish GUIs, recursion
• Week 9: binary trees
• Week 10: data structures and review
• Final exam!
The Midterm

- 25% of your grade = 5 homework assignments
- Covers everything we've discussed in lecture and homework
- Study strategy:
 - Midterm and final from last quarter
 - Practice-It problems
 - Study your own notes and the online slides
 - Textbook
- My midterms tend to be challenging and long.

Exam Question Types

1. Reading: Reference manipulation (EQ1)
2. Reading: Throwing and catching exceptions
3. Reading: List/ArrayList usage (EQ2)
4. Reading: Inheritance mess (EQ3)
5. Writing: Implement inheritance and Comparable interface
7. Writing: Linked list operations (EQ4)
8. Writing: Using lists and iterators (EQ5)

Not on the test

- Sets, Maps, Stacks, Queues
- Complexity (big-O notation)
- Recursion

Example Question 1

```java
ListNode x = new ListNode(1);
ListNode y = new ListNode(2, x);
ListNode z = new ListNode(3, y);
x.next = z;
y.next.next = y;
z = x;
x.data = 4;
y.data = 6;
z.next.data = 5;
System.out.println("x: " + x.data);
System.out.println("y: " + y.data);
System.out.println("z: " + z.data);
```

What does this code print when run?
Example Question 2

```java
public static void mystery(List<Integer> list) {
    for (int i = 0; i < list.size(); i++) {
        int n = list.get(i);
        if (n % 10 == 0) {
            list.remove(i);
            list.add(n);
        }
    }
    System.out.println(list);
}
```

Write the output for the following lists inputs:

- [1, 20, 3, 40]
- [80, 3, 40, 20, 7]
- [40, 20, 60, 1, 80, 30]

Example Question 3

```java
public class Do {
    public void m1() { System.out.println("A1"); }
    public void m2() { m1(); System.out.println("A2"); }
}
public class Re extends Do {
    public void m1() { System.out.println("B1"); }
    public void m3() { System.out.println("B3"); }
}
public class Mi extends Re {
    public void m1() {
        m3();  System.out.println("C1");
    }
    public void m2() {
        super.m2();  System.out.println("C2");
    }
}
```

Suppose the variables are defined:

```java
Do do1 = new Do();
Do do2 = new Re();
Do do3 = new Mi();
Object obj1 = new Do();
Object obj2 = new Re();
```

What do the following statements do? (Write "error" for errors.)

- do1.m2();
- do2.m2();
- do3.m1();
- do3.m2();
- do3.m3();
- ((Re) do3).m3();
- ((Re) do3).m1();
- obj1.m1();
- obj2.m1();
- ((Do) obj2).m1();

Example Question 4

```java
public class ListNode {
    public int data;
    public ListNode next;
}
public class LinkedIntList {
    private ListNode front;
    ...;
}
```

Here is the declaration of the function you are to implement, as a member of the LinkedIntList class:

```java
/**
 * Removes all even numbers from this list.
 */
public void removeEvens()
```

Example Question 5

Write the method `listCompare`, which compares two lists of characters lexicographically (dictionary order). `listCompare` should return a negative integer if the first list should be ordered before the second, a positive integer if the first list should be ordered after the second, and zero if their contents are equal. Do not use any String objects or methods.

Ordering example:

- `[]` < `['a', 'b', 'c']` < `['c', 'a', 't']` < `['c', 'a', 't', 's']` < `['z']`

So your method must return a positive number if passed a first list containing `['c', 'a', 't', 's']` and a second list containing `['c', 'a', 't']`, since "cats" comes after "cat" in the dictionary. If either List is null, throw an `IllegalArgumentException`.