Main topics of the week:
- Review problems for midterm

Problem: Let $\Sigma = \{0, 1\}$ and $A = \{ w \in \Sigma^* | w$ does not contain a pair of 1’s separated by an odd number of symbols\}. Show that A is a regular language.

Proof: Consider the complement of the language A, i.e., all strings that do contain a pair of 1’s separated by an odd number of symbols. We can write a regular expression for this complement as $(0 \cup 1)^* 1 (0 \cup 1) (0 \cup 1)^* 1 (0 \cup 1)^*$, showing the complement is a regular language. Since the complement of A is regular, A must be regular.

Problem: Let A be a regular language over the alphabet Σ. Show that $B = \{ x | x = yz$ for some $y \in A$ and some string $z \in \Sigma^* \}$ is a regular language.

Proof: Let R be a regular expression that describes A. Then $R \Sigma^*$ is a regular expression describing B. Alternatively, given an NFA for A, construct an NFA for B by adding a new accept state with ϵ transitions from the original accept states, and a loop for all symbols in Σ.

Problem: Let A be the language $\{ a^i b^j a^k | k > i + j \}$. Prove that A is not regular.

Proof: Suppose that A is regular and let p be the value guaranteed by the pumping lemma. Consider the string $a^p b a^{p+2} \in A$. When realized as xyz, where $|xy| \leq p$ and $|y| > 0$, we see that y must be of the form a^k for some $k > 0$. Then xyz would look like $a^{p+k} b a^{p+2}$, and since $k \geq 1$, $p+k+1$ cannot be strictly less than $p+2$, meaning that $xyzz$ is not in the language, so A cannot be regular.

Problem: Let A be the language $\{ (ab)^n a^k | n > k$ and $k \geq 0 \}$. Prove that A is not regular.

Proof: Suppose that A is regular and let p be the pumping length. Consider the string $(ab)^{p+1} a^p \in A$. Take any decomposition as xyz with $|xy| \leq p$ and $|y| > 0$. Then we know that z ends with $(ab)a^p$. If y contains a b, then xz will have at most p b’s, so cannot be in A. Likewise, if y contains an a, then xz will have at most p a’s before the last b, so again cannot be in the language. Thus A cannot be regular.

Problem: Prove that the reverse of a regular language is a regular language.

Proof: Let A be a regular language and let $N = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Define the NFA N' to be $\langle Q' \cup \{ s \}, \Sigma, \delta', s, \{ q_0 \} \rangle$ where we define δ' by
\[
\delta'(q, a) = \begin{cases}
 \{ p | \delta(p, a) = q \} & \text{if } q \neq s \\
 F & \text{if } q = s \text{ and } a = \epsilon \\
 \emptyset & \text{otherwise}
\end{cases}
\]
Basically, we are defining N' to run N in reverse. We add a new start state and ϵ transitions to the accept states of N, then reverse all the transitions of N. If a string is in
A, then its computation sequence ends in an accept state. When we feed the reverse of this string into N', we choose the ϵ transition to the accept state of N, then choose the transitions corresponding to the ones from N, and these will lead us to the start state of N which is the accept state of N'. Likewise, a string accepted by N' describes a corresponding computation sequence in N.

Problem: An All-Paths-NFA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ like an NFA except that this automaton accepts a string if *every possible computation* of the string ends in an accept state. (Recall that in a regular NFA, if *some* computation ends in an accept state, then the string is accepted.) Prove that a language is regular if and only if it is recognized by an All-Paths-NFA.

Proof: If a language is regular, it is recognized by a DFA. Clearly, any DFA is also an All-Paths-NFA since in a DFA, a string has a unique computation sequence. For the other direction, given an All-Paths-NFA we will construct an equivalent DFA, using almost the same construction used to find an equivalent DFA for an NFA. Let $P = (Q, \Sigma, \delta, q_0, F)$ be the All-Paths-NFA. Then the constructed DFA $M = (\mathcal{P}(Q), \Sigma, \delta', E(\{q_0\}), \mathcal{P}(F))$ recognizes the same language. This is just like the construction used to find an equivalent DFA for a given NFA except for the way the accept states are defined. The states of M are the subsets of Q, the start state is the ϵ closure of the start state of P, and the accept states of M are all the subsets of F. The transition function δ' is defined as $\delta'(R, a) = \{ q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$. If a string s is accepted by P, then all paths through P result in acceptance. Thus s will be accepted by M since M was constructed to follow the paths of P, and so all of these paths resulting in accept states of P does constitute an accept state of M. Conversely, since the accept states of M consist only of accept states of P, all paths in P for an M-accepted string are accepting paths in P. Alternatively, we could define the NFA N to just be P with the accept and non-accept states reversed. Then because of the all paths property, N recognizes the complement of the language recognized by P. But since the complement of a regular language is regular, this means the language recognized by P is regular.