Instructions: You must complete this exam independently, with no outside resources of any kind except for: the Tarjan book, CLRS, the splay tree article, the “Scapegoat and Splay Trees” notes referenced in the last homework, and any notes you took in class. If you find a question confusing or suspect that it is inaccurate, please contact me ASAP by email.

1. Suppose that, instead of splaying every time we locate a node, we only splay every other time (i.e., on the second, fourth, sixth, eighth, etc. operations). In a splay tree with \(n \) nodes, show that this modification could lead to a \(\Theta(mn) \) running time for a sequence of \(m \) operations in the worst case. You are free to choose the initial tree structure and sequence of operations; please state what they are in your answer. Remember to show both an upper and lower bound on the worst case complexity.

2. In a splay tree with \(n \) nodes, what is the largest possible increase in potential that can be created from a single rotation (not a splay step)? Describe what the splay tree looks like before and after this worst-case single rotation.

NOTE: Please use the potential function we defined in class, \(\Phi = \sum_x r(x) = \sum_x \lg(\text{size}(x)) \). Answer in terms of \(n \), not \(r(x) \) or \(r'(x) \).

3. Suppose that we want to make Fibonacci heaps even lazier by skipping \textit{consolidate} when the number of trees in the root list, \(t \), is less than some constant \(k \). For \(k \leq 2 \), this is clearly identical to a regular Fibonacci heap. For larger values of \(k \), however, we may run \textit{consolidate} less often than in a regular Fibonacci heap.

 (a) Explain how to implement \textit{delete-min} in this modified data structure along with its worst-case running time. (You may assume \textit{consolidate} is available to use as a subroutine.)

 (b) Prove that the amortized running time of \textit{delete-min} is still \(O(\log n) \). You may assume any results proven in class. (Hint: Use the same potential function that we used in the analysis of regular Fibonacci heaps so that you only have to analyze how the new \textit{delete-min} is different.)

 (c) (Grads only) Determine the amortized running time of \textit{delete-min} when \(k \) is replaced with an arbitrary function on the number of nodes, \(f(n) \). (For example, when \(f(n) = \lg n \), then \textit{consolidate} is only performed when there are at least \(\lg n \) trees in the root list.) Express the new amortized running time in terms of \(n \) and \(f(n) \).