Data Structures Lab

Learning to Prioritize
Assignment 3

- Due tomorrow night

- Focus on implementing a balanced search tree
 - Solving the diamond problem is secondary

- Make sure your files and methods are named correctly
 - Tree.h, Tree.cpp, assn3.cpp, test.cpp
 - insert, find, remove, print
Assignment 3 - Tips

● Build your tree incrementally
 ○ Start with a print method
 ○ Test each method as you write it

● Write insert and remove recursively
 ○ Makes balancing much easier

● Write rotation methods before balance method
 ○ Remember to test them

● I'll be in Descutes 100
 ○ Today 1:00-3:00
 ○ Friday throughout
Assignment 3 - Tips

- Does your tree need to account for double values?
 - That's what the problem is looking for...
 - But do we have to put them in our tree?

- Remember, your tree must support:
 - insert
 - find
 - remove

- How can we deal with doubles but keep our tree simple?
Tracking Tree Height

- How do we know when our tree is out of balance?
 - Need to compute balance factor
 - Easy if you know subtree heights
 - But how do you compute them?

- How about a recursive solution?

```cpp
height(Node* curr) {
    h1 = height(curr → left)
    h2 = height(curr → right)
    return 1 + max(h1, h2)
}
```
Tracking Tree Height

- Recursively computing height takes $O(n)$
 - All operations should run in $O(\log n)$

- Seems like we're doing a lot of extra work
 - Let's keep track of height as we go
 - Only update when necessary

- Assume each node holds a height variable
 - Finding height is a $O(1)$ lookup
 - Can we update height in $O(1)$ as well?
Tracking Tree Height

• Let's update our recursive code

```cpp
height(Node* curr) {
    h1 = height(curr → left)
    h2 = height(curr → right)
    return 1 + max(h1, h2)
}
```
Let's update our recursive code

```
updateHeight(Node* curr) {
    h1 = curr -> left -> height;
    h2 = curr -> right -> height;
    curr -> height = 1 + max(h1, h2)
}
```

What assumptions does this code make?
Tracking Tree Height

● Which nodes need to be updated?
 ○ Any node along an insert or delete path
 ○ Easy to access if we write insert/delete recursively

● At the end of each call to insert/delete:
 ○ Update the height of your node
 ○ Balance your node if necessary
• This might be a little problematic...

//node has two children
if (temp → left != NULL && temp → right != NULL){

 //find the in-order predecessor
 Node* & temp = getMax(curr->left);

 //swap up value and remove lower node
 curr → value = temp → value;
 remove(temp → value, temp);
}

Tracking Tree Height

- Also need to update height after rotation
 - Which nodes need to be updated?
 - Does the order matter?
Assignment 3 - Questions
Keeping your priorities straight

- Binary Search Trees maintain tree order
 - Any element can be found in O(log n)
 - But what if you only want specific elements?
 - Can we find them faster?

- Priority Queue
 - Allows easy access to (largest / smallest / best) node
 - Pushes important elements to the front

- Our PQs will prioritize small elements
 - But you could use any comparator
One PQ implementation is the min-heap
 ○ Binary Tree
 ○ Root is the smallest element of the tree
 ○ Root of each subtree is smallest element in the subtree

Easy to access the smallest element
 ○ It's always at the root
 ○ O(1)

Hard to access arbitrary elements
 ○ Heap ordering doesn't facilitate searching
Throw it on the heap
Heap Insertion

- How do we insert into a heap?
 - Blindly insert at the bottom
 - Worry about ordering problems later

- Bubble-up
 - Compare new node against parent
 - If new node is larger, we're done
 - If new node is smaller, swap values and repeat

- Advantages
 - Smallest nodes rise to the top
 - Tree remains balanced
 - Fast insertion time
Heap Insertion

The diagram shows a binary heap structure. The root node is labeled with the number 3, with nodes 8, 6, 9, 12, and 13 below it. The number 2 is being inserted into the heap, indicated by its golden color.
Heap Insertion
Heap Insertion
Heap Insertion
Heap Removal

● How do we remove the root of a heap?
 ○ Swap it with the bottom node
 ○ Delete that one instead
 ○ Worry about ordering problems later

● Bubble-down
 ○ Compare root against children
 ○ If root is smaller, we're down
 ○ Otherwise, swap root with smallest child and repeat

● Inverse of Bubble-up
Heap Removal

Diagram of a heap structure:
- Root node: 2
- Child nodes: 8, 3
 - 8 has children: 9, 12, 13
 - 3 has a child: 6
Heap Removal

Diagram:

```
  6
 /\   \   /
|  8 3  |
/ \     /
9 12   13
```

Heap Removal
Heap Removal
Heap Implementation

- Heap trees are always completely full
 - We can implement this with an array

- Replace pointer manipulation with array arithmetic
 - Kind of the same thing...

- More on that next week
Homework 4

- Currently posted

- Due November 25th
 - Two weeks from tomorrow

- Implement Huffman Compression algorithm
 - File compression algorithm
 - Makes good use of priority queues
Huffman Compression

- How do you encode a file?
 - Assume 64 potential characters
 - Letters, numbers, symbols

- Characters can be identified with unique 6 bit codes
 - a = 000000
 - b = 000001
 - ...
 - y = 011001
 - z = 011010

- An n character file can be encoded in 6n bits
Huffman Compression

- Can't assign codes blindly
- If we encode as follows
 - a = 0
 - b = 1
 - c = 10
- What does 10 mean?
 - ba?
 - c?
- Character codes must contain unique prefixes
Huffman Compression

- Represent character codes with a binary tree
 - Characters must be on leaves
 - No character code can be a prefix of another
Huffman Compression

- Can we encode smarter?

- Some characters appear more frequently than others
 - What if we assigned them shorter codes?
 - Give other characters longer codes

- Still need to adhere to prefix rule
 - Each character is a leaf in a binary tree
 - Higher frequency characters have lower depth
 - Lower frequency characters have greater depth
Huffman Compression

- Suppose a is much more frequent then other characters...

\[
\begin{align*}
a &= 0 \\
b &= 100 \\
c &= 101 \\
d &= 11
\end{align*}
\]
Huffman Compression

● So how can we optimally assign codes?
 ○ (Assume we know each character's frequency)

● Huffman's algorithm runs as follows:
 ○ Create a node for each character
 ○ Combine two nodes with smallest frequencies
 ○ Repeat until only one node remains

● Use the resulting tree to produce character codes
Huffman Compression
Huffman Compression

a (0.4) b (0.2) c (0.1) d (0.3)
Huffman Compression

Diagram:

- Node a (0.4)
- Node b (0.2)
- Node c (0.1)
- Node d (0.3)
- Node (0.3) connecting to b and c
Huffman Compression

```
  a  (0.4)
   /
  (0.3)  
 /     
 b  (0.2) c  (0.1)
     /     /
   d  (0.3)
```
Huffman Compression
Huffman Compression
Huffman Compression
Huffman Compression
Huffman Compression

- So where do priority queues come in?
 - We only ever care about the smallest nodes

- PQs make Huffman Compression very efficient
 - Insert all nodes into a PQ
 - Remove the root twice to get the two smallest nodes
 - Insert a new node with their combined probability
 - Repeat until all nodes are gone
Assignment 4 - Huffman Compression

- Implement a Priority Queue
 - Elements should be binary tree nodes
 - Initially unconnected

- Compute character frequencies
 - Read in a file
 - Count character occurrences

- Apply Huffman algorithm
 - Produce character tree
 - Translate into character codes

- Write an encoder/decoder
C++ Spotlight - Templates

● Our data structures so far have had their data types hardcoded in
 ○ CircularLinkedList only takes strings
 ○ BST only takes int

● What if we want to have a generic type?

● Templates to the rescue!
"template <typename T>"
 ○ instantiates a generic type T

```cpp
template <typename T>
T max(T a, T b){
  if (a > b)
    return a;
  else
    return b;
}

int x = max<int>(5, 6);
Node n = max<Node>(Node(5), Node(6));
```
What about a templated class?
 ○ We can do that too!

```cpp
template<typename T>
class Node{
  T data;
  Node* next;
};

template<typename T>
T Node<T>::getData(){
  return this->data;
}
```
● Each method of a templated class needs a template tag
 ○ Even if it doesn't use the template

template <typename T>
class Node{
 T data;
 Node* next;
};

template <typename T>
int Node<T>::getSize(){
 return (this==NULL) ? 0 : 1+size(next);
}
Our heaps need to compare the objects we pass in. This is fine if we template with ints or strings. But what if we template our heap with a custom class? How do we compare huffmanNodes? What does it mean to compare huffmanNodes?
C++ Spotlight - Operator Overloading

- C++ translates a+b into "a.operator+(b)"
 - We can write a operator+ method for a's class
 - T T::operator+(T& other)

- Similar for other operators
 - bool T::operator==(T&)
 - T T::operator++()
 - T T::operator new(size_t)

- Want to know what else you can overload?
How might we compare two nodes?

```cpp
class Node{
    int data;

public:
    bool operator<(Node& other);
};

Node::operator<(Node& other){
    return data < other.data;
}
```