Welcome back!
Wake-up quiz – Heaps

- Is this a min-heap?
Wake-up quiz – Heaps

- Is this a min-heap?

- Yes
Week 7 class evaluation

- Overall, everything seems to be ok.
- Comments (slightly edited):
 - “Would there be a way for us to know what we got marked down on for previous programming assignments?”
 - Email.
 - “Could u talk about the HW assignment more detailed?”
 - Yes, today
Agenda for today

- Heaps and Priority queues
- Better design
- Assignment 4
- Assignment 5
Assignment 3 gotchas

• Hint number 8: Use a debugger
 – `cout << "I'm at the root!"`
 – `gdb myProgram (in c++)`
 • If I show it in class, noone will remember
 – Start using it

• Hint number 9: Start early
 – It will probably never change :-)

Assignment 4 – part 1

- Implement a Binary Min-Heap
 - Use any language
- Use it as a Min-priority-queue
- Accept unspecified number of elements
 - Grow as necessary
 - Do not pre-store elements
Assignment 4 – part 1

- Heap implementation
 - Use an array to store elements
 - The elements have more data than just a key
 - Make a data structure for a heap node
 - Make a data structure for a heap that contains heap nodes
 - Support Min-Heap-Insert and Heap-Extract-Min
 - Get inspired by chapter 6
Better design

• Early term implementation

```c
struct HeapNode {
    int key;
    string data;
};
```

• This is fine for our purposes in this class but not how it is done in practice.
Better design

- What if, for example, I want to use a `double` as key instead of `int`?
- Use generic types for our data structures.
- All Java Collections classes use generic types. Examples:
 - `ArrayList<E>`
 - `LinkedList<E>`
 - `TreeSet<E>`
public class HeapNode<T extends Comparable<T>> {
 private T key;
 private String name;

 public HeapNode(T key, String name) {
 this.key = key;
 this.name = name;
 }
}
Better design

- What if I want to make several implementations of the same concept?
- Generalize the data structure
 - In Java, we would use interfaces
 - In C++, we would use templates
- For example, Queue<E> interface in Java has several implementations, including:
 - LinkedList<E>
 - SynchronousQueue<E>
public interface IMinHeap<T extends Comparable<T>> {
 public abstract void minHeapify(int i);

 public abstract void buildMinHeap();

 public abstract HeapNode<T> heapExtractMin();

 public abstract void minHeapInsert(HeapNode<T> x);

 public abstract void heapSort();
}
MinHeap implementation

```java
public class MinHeap<T extends Comparable<T>> implements IMinHeap<T> {

    private final int initialSize = 128;
    private HeapNode<T>[] elements;

    private int heapSize;

    public MinHeap() {
        elements = new HeapNode[initialSize];
        heapSize = 0;
    }
}
```
Assignment 4 – part 2

• Simple cryptographic system

• Principles of cryptography
 – The encryption/decryption *method* is known
 – The *cipher* is known
 – The *key* is unknown

• Cryptanalysis
 – Finding the *key* to decrypt the cipher
Assignment 4 – part 2

- Encryption
 - For every word w in message m with encryption key k
 - Select k random words and attach a number in ascending order
 - Input w and attach a number
 - Randomize the order of all words in the message

- This is how I produced hidden messages for you to decrypt.
Assignment 4 – part 2

• Decryption
 – For a hidden message h with encryption key k and a known number of words w
 • Extract the k words with smallest number attached
 • Print the $(k+1)$th word
 • Repeat w times

• This is what you should do
 – There are five hidden messages
 – k is unknown but I give you hints.
Reading the key

- As usual, input should be possible from a file.
- The key is not part of this file
 - Use a parameter
- Remember:
 - “myProgram < f” redirects f to the standard input of myProgram.
 - Parameters have to come before this
C++ parameters

// argc: Number of arguments
// argv: Argument vector
int main(int argc, char * argv[]) {
 int secretKey;
 // argv[0] is the program's name
 istringstream keyStr(argv[1]);
 keyStr >> secretKey;
}

C++ parameters

- **Linux/Unix/Mac OS**
 - `g++ myProgram.cpp -o myProgram`
 - `./myProgram 1 < dwarves_key1`
 - Runs the program with the secret key 1, using the hidden message dwarves_key1

- **Windows**
 - `g++ myProgram.cpp -o myProgram`
 - `myProgram.exe 1 < dwarves_key1`
 - Runs the program with the secret key 1, using the hidden message dwarves_key1
// args is the arguments list
public static void main(String[] args) {
 int hiddenKey = Integer.parseInt(args[0]);
}
Java parameters

● **Linux/Unix/Mac OS**
 - `javac myProgram.java`
 - `java myProgram 1 < dwarves_key1`
 - Runs the program with the secret key 1, using the hidden message `dwarves_key1`

● **Windows**
 - `javac myProgram.java`
 - `java myProgram 1 < dwarves_key1`
 - Runs the program with the secret key 1, using the hidden message `dwarves_key1`
Java standard in

- By the way, in Java, there is no `cin` or `cout`
- We have to wrap something around `System.in`
- Scanner is a nice class for that

```java
Scanner scan = new Scanner(System.in);
int myInt = scan.nextInt();
String myStr = scan.next();
```
Assignment 5

• Optional
 – But only if you have more than 380 points!
• Due one week after assignment 4
• Implement quicksort
• Implement at least two other sorting algorithms
• Compare performance
 – Small write-up, for example with graphs
Programming languages

- We have looked at C++ and Java
- There are many programming languages
 - C++ and Java are practical and widely deployed
 - Some languages are impractical
- One of the goals of this course is to be able to learn new languages
- Concepts are often the same
Programming is fun

What is this?
Hello World in brainfuck

- *Brainfuck* is an impractical language
 - But it is theoretically as powerful as Java and C++
 - It is Turing complete
- Also called an esoteric programming language
- The point:
 - You can learn any language, but it takes practice
Thank you

Questions?