Assignment 2

due Monday, January 25, 2010

1. What is the running time for the following code, which multiplies two $n \times n$ matrices A and B, storing the result in C? [4 points]

 for i=1 to n
 for j=1 to n
 C[i,j] = 0
 for k=1 to n
 C[i,j] = C[i,j] + A[i,k]*B[k,j]

2. Determine the run times of the following two pieces of code, which do pretty much nothing. [6 points]

 sum =0
 for i = 1 to n*n*n
 for j=1 to i*i*i
 sum ++

 and

 sum =0
 for i = 1 to n^17
 j=i
 while j>0
 sum++
 j = (j div 5)

3. Show that $\sum_{i=1}^{n}[\log i] = \Theta(n \log n)$. Do this directly, without recourse to Stirling’s approximation. [6 points]

4. Suppose that each row of an $n \times n$ array A consists of 1’s and 0’s in such a way that, for any row, all the 1’s come before any 0. Assuming that A is already in memory, describe how to find which row of A which contains the most 1’s. Aim to do this in $O(n)$ time, not $O(n^2)$. [6 points]
5. Occasionally, multiplying the sizes of nested loops can give an over-estimate for the big-O running time. This happens when an innermost loop is infrequently executed. With this in mind, determine the running time of the following piece of code. [8 points]

```c
for( int i = 0; i < n; i++ )
    for( int j = 0; j < i * i; j++ )
        if( j % i == 0 )
            for( int k = 0; k < j; k++ )
                sum++;
```

6. *(Recurrence Relations)* Exercise 4.5-1, p 96. [6 points]

7. *(Recurrence Relations)* Exercise 4.5-2, p 97. [3 points]

8. *(Reverse a linked list in constant space)* Exercise 10.2-7, p 241 [8 points]

9. Describe how to implement the stack ADT using two queues. What is the running time of the push() and pop() methods in this case? [6 points]

Total: 53 points

Notes:

- Q6 and Q7 in the 2nd edition are exercises 4.3-1 (which is different) and 4.3-2 (same).
- For Q9, ADT means ”abstract data type”. The idea is to simulate a stack using queues and queue methods. It need not be very efficient.