CIS 313, Intermediate Data Structures
Winter 2010

Assignment 1

due Friday, January 15, 2010

1. Suppose that algorithm \(A \) uses \(293907 \cdot n^3 \) operations while algorithm \(B \) uses \(3 \cdot n^5 \) operations. Determine the value \(n_0 \) such that \(A \) is as fast or faster than \(B \) for all \(n \geq n_0 \). [4 points]

2. exercise 3.1-4, p 53. Additionally, is \(2^{2n+1} = O(2^{2n}) \)? [4 points]

3. exercise 3-2, p 61. [8 points]

4. exercise 3-3, part a (not part b), pp 61-62. [8 points]

5. An algorithm takes 0.2\(ms \) for input size 10 (this allows you to determine the constant \(c \), which will be different in each case). How large of an input size \(n \) can be solved in an hour if the run time of the algorithm is \(\ldots ? \)

 (a) \(c \cdot n \)
 (b) \(c \cdot n \log n \)
 (c) \(c \cdot n^3 \)
 (d) \(c \cdot 2^n \)

 [8 points]

6. Describe how to find the minimum and maximum of an array of \(n \) elements with at most \(\frac{3}{2} n \) element comparisons. (Do not count comparisons needed for the array indices, just comparisons of array elements.) [4 points]

Total: 36 points

Notes:

- For Q2, we are not asking you to do questions 1 through 4. Just question 4 of section 3.1.
- In Q4, ignore any function involving \(\lg^* \).
- An \(ms \) is 1/1000 of a second.
- Hint for Q6: form \(\lceil \frac{n}{2} \rceil \) pairs, from each pair find candidate min and candidate max for the whole list.