1. a. As always, who is the most important person in my network?
b. Which female in my network has the highest betweenness in my network?
c. Of only the males who are younger than me, who has the highest betweenness?

2. I used a couple of different graphs to answer the questions above. As usual, I used Eigenvector Centrality to answer my first question, asking who the most important person is in my network. I basically just left everything raw and unfiltered for this one and got an answer that only sort of made sense in my mind, mostly because it wasn’t an answer I was expecting even if it has truth to it.

Anyway, for my second question, I used the same basic idea of “Betweenness” described in the chapter, leaving the entire network but only looking at the females for my answer. I looked for a way to get NodeXL to do this automatically but I honestly couldn’t get what I wanted to work the way I wanted it to. So I couldn’t get gender to show up as different shapes, only age and random other attributes worked. Thinking about it after the fact makes me wonder if my Facebook output was correctly formatted. Still not sure why this was but I just used my mouse to hover over all the large circles to get info on gender while keeping track in my head of who was “winning”.

My second question led in to my third question. I filtered for only males that are younger than me. For this I used the VLOOKUP that is described in an advanced topic section in this chapter. This was actually pretty interesting to see. I actually changed my question. It was “older than me” at first, but I only had a very small number of non-linked nodes when I searched for older males. So I changed it to younger and found that the person with the highest betweenness was one that I met in Thailand when we had a close-nit group of friends (our few English speaking friends). This was fun.

3. Humans are amazing problem solvers. I had to use some of it just this assignment as NodeXL wouldn’t (probably couldn’t) do what I was thinking in my head. So my problem was, what female had the highest betweenness of my entire network. This wasn’t really a hard problem. I used a “brute-force method” to look at all the large nodes, mouse over them, check if they are female, and keep track of which female had the highest value.

For a more general answer, humans are very, very good at picking up on visual patterns. This can also be our downfall though. Optical illusions are very present I’ve noticed while looking at these graphs. I’ll think “I shouldn’t even check this node, it looks way smaller than my other ones that I looked at earlier” and actually find that it is much larger. This can be for various reasons like surrounding nodes being smaller and whatnot. So basically, we can be very good at visual problem solver, but we should always double check with hard numbers.

4. Honestly I don’t think this is really a fair question. I know a fair amount about the actually programming behind these applications that people are claiming have “unintentionally” sent their data to ad agencies. Next time you add a new app (like the one we had to add for this chapter) read the pop-up very carefully. It will say that it isn’t Facebook’s responsibility to make sure this isn’t fraudulent. You accept it and then your information gets sent all over by data-mining Facebook’s inherent traffic. Many
of these problems really have nothing to do with Facebook at all, but are rampant throughout the entire computer world. While Facebook has definitely made a lot of money off of selling personal information, I’m not sure that these articles reflect it.