CIS 630 - Fall 2010
Distributed Systems

Lecture 1
Characterization of Distributed Systems

University of Oregon
Department of Computer and Information Science
Welcome!

CIS 630 required core course in graduate curriculum
 - Replaces CIS 629
 - Prerequisite: 415 or equivalent, 429/529

Instructor

 - Prof. Allen D. Malony (malony@cs.uoregon.edu)

Course webpage

 - http://www.cs.uoregon.edu/classes/10F/cis630

Class:

 - Tues./Thurs., 12:00-1:20 pm, 475 McKenzie Hall
Course Text

- Distributed Systems: Concepts and Design
 - G. Coulouris, J. Dollimore, T. Kindberg
 - Addison-Wesley, Fourth Edition
 - 2005

- Text webpage
 - http://www.cdk4.net

- Many reference texts listed on the course webpage

- Will follow text closely

- Read it well
Lectures

- All lectures will use computer slide presentation
 - All lectures slides will be posted on webpage
 - No later than end of week of lecture
- Lecture content
 - Some text / figures come from online book materials
 - Other sources of lecture content will be cited
- Please do not waste paper printing the slides
- I’ll will do my best to make the lectures interactive
- Please speak up and ask questions!
Assignments

☐ Problem sets (2) (not graded) (5%)
 ☐ Third and sixth week
 ☐ Re-enforce topics and practice for exam
☐ Programming exercise (5%)
 ☐ Java RMI client-server application
 ☐ Early experience programming distributed systems
☐ Term exam (in class and take home) (30%)
☐ Term paper (30%)
☐ Term project (30%)
☐ Might decide to have reading summaries …
Term Exam

☐ There will be one exam in the course
☐ It will take place in Week 9 (before Thanksgiving)
☐ It will cover topics through Week 8
 ☑ Lecture topics
 ☑ Research papers (I will assign a couple for reading)
 ☑ Book chapters
 ☑ All content is fair game
☐ Maybe be given in two parts (still deciding):
 ☑ Exam in class (open book)
 ☑ Take-home problem
Term Paper

- Give you an opportunity to explore a topic of interest
 - Might not be covered by lecture or assigned readings
- Give you experience in reading research literature
- Give you experience in assimilating information
- You will present your paper in class
 - During Week 10
- See course webpage for paper requirements
Term Project

☐ Enhance your knowledge of distributed systems
 ☐ Hands-on distributed application development
 ☐ Gain some project experience for your resume!

☐ Done in teams (3-4 people)
 ☐ Individual and group effort must be identified
 ☐ Skills survey will help me balance teams
 ☐ Will consider team preferences

☐ Deliverables
 ☐ Written report of accomplishments
 ☐ Demonstration during finals week
 ☐ Project presentations during final exam period
Experience Survey

☐ See link on webpage
☐ Please fill out
☐ Helps me gauge the individual/collective experience
☐ Please provide your preferred email address
Other

- Lecture
 - There will be three times when I will be away
 - Will attempt to schedule guest lectures
- Academic integrity
 - Do not cheat
 - Do not plagiarize
What are distributed systems?

A distributed system is a set of programs (processes) which execute across a collection of networked computers, communicating and coordinating their activities by passing messages. Distributed systems are at the heart of the current revolution in computing systems technology because they provide unprecedented degrees of resource sharing, scalability, and cost/performance benefits. In many respects, anything that involves computers involves some aspect of distributed systems. The roots of parallel computing are also traced to early implementations as distributed systems.
CIS 630 course will cover theory and models of distributed systems, their design and implementation, as well as exemplar case studies. The main areas of focus:

- Interprocess communication
- Processes and threads
- Synchronization and coordination
- Distributed file systems and distributed shared memory
- Peer-to-peer systems

Distributed systems have important general characteristics that we will study in this course:

- Distributed system architecture
- Networked and logical interaction
- Shared state and coordinated operation
- Correctness issues arising from concurrency
Course Topics

- Distributed system characterization
- Networking
- Distributed processing and programming
- Understanding time and global states
- Coordination and agreement
- Distributed data management and file systems
- Concurrency control and distributed transactions
- Replication
- Name services and peer-to-peer computing
- Web services and grid/cloud computing
Lecture Objectives

- Distributed system characteristics
 - components coordinating actions with messages
 - Concurrency
 - Independent failure and lack of global clock

- Place distributed systems in context
 - Internet, intranet, mobile computing

- Motivate benefits of resource sharing
 - Web as an example.

- Understanding of challenges for distribute systems
 - heterogeneity, openness, security, scalability
 - failure handling, concurrency, transparency
Characterization of Distributed Systems

- A distributed system is defined as one in which components (software primarily) at networked computers communicate and coordinate their actions only by passing messages.

- Definition allows for:
 - Concurrent execution of programs
 - Prevents possibility of a global clock
 - Means that components can fail independently

- Why construct and use distributed systems?
 - Stems from a desire to share resources
 - Coordinate distributed operations
Examples of Distributed Systems

- Internet
 - Very large collection of computer networks
 - Very large distributed system of networked computers
 - Enables users to make use of a vast number of services

- Intranet
 - Portion of Internet separately administered
 - Use firewall to enforce own local security policies
 - Supports standard and specialized services

- Mobile and ubiquitous computing
 - Nomadic computing, location-aware, embedded
 - Always present and available
Typical Portion of the Internet

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Devices in a Distributed System

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Resource Sharing

- Hardware sharing and computing/data sharing
- Variety of patterns and types of resource sharing
- A service manages a collection of related resources and presents their functionality to users / applications
 - Shared resources are managed by server processes
 - Accepts service requests from client processes running on other computers and responds accordingly
 - Well-defined set of operations
 - Requests are sent in messages
- Scalability of services is a key aspect
Terminology

- **Service**
 - A distinct part of a computer system that manages a collection of related resources and presents their functionality to users and applications.
 - Example: File service, print service.

- **Server**
 - A running program on a networked computer that accepts requests for services and returns the result of the service (if any) to the client.
 - The client is the computer that submits the request to the server.
Types of Distributed Process Interactions

- Client-server systems
 - Clients request services from servers
- Versus peer-to-peer
 - Processes have equal status
- Resources may be encapsulated as objects
 - Methods are invoked by client objects
- Basis of distributed processing mechanisms
 - Naming
 - Management of state
WWW

- Evolving system for publishing and accessing resources and services across the Internet
- The WWW and the Internet are not the same thing
- The WWW is an open system
 - Extensible in services and service providers
 - Extensible in resource types and content
- Illustrates approach to addressing scale
 - Use of hierarchical naming
 - Partitioned data
 - Caching and replication
Web Servers, Web Browsers, and Web Services

Web servers
- www.google.com
- www.cdk3.net
- www.w3c.org

Internet

Browsers
- http://www.google.com/search?q=kindberg
- http://www.cdk3.net/

Protocols
- http://www.w3c.org/Protocols/Activity.html

File system of www.w3c.org

Activity.html

URL: Uniform (Universal) Resource Locator

HTTP: HyperText Transfer Protocol

XML: eXtensible Markup Language

* Graphics from Distributed Systems: Concepts and Design, Coulouris, Dollimore, and Kindberg
Challenges

- Heterogeneity
- Openness
- Security
- Scalability
- Failure handling
- Concurrency
- Transparency
Transparencies

- Transparency hides the separation of components
- *Access transparency*: enables local and remote resources to be accessed using identical operations
- *Location transparency*: enables resources to be accessed without knowledge of their location
- *Concurrency transparency*: enables several processes to operate concurrently using shared resources without interference between them
- *Replication transparency*: enables multiple instances of resources to be used to increase reliability and performance without knowledge of the replicas by users or application programmers
Transparencies (continued)

- *Failure transparency*: enables the concealment of faults, allowing users and application programs to complete their tasks despite the failure of hardware or software components.

- *Mobility transparency*: allows the movement of resources and clients within a system without affecting the operation of users or programs.

- *Performance transparency*: allows the system to be reconfigured to improve performance as loads vary.

- *Scaling transparency*: allows the system and applications to expand in scale without change to the system structure or the application algorithms.