1. Draw the binary tree whose preorder traversal is $bgaeidcfh$ and whose inorder traversal is $agiebdcfh$. [5 points]

2. The **balance factor** of an internal node v of a binary tree is the difference between the heights of the left and right subtrees of v. Write a recursive routine which will print the balance factors of all nodes in a binary tree. What is the running time of this routine? [6 points]

3. Consider an ordered tree T and a binary tree T' representing it, using the first-child next-sibling representation (section 10.4). An inorder traversal of T' is equivalent to what kind of traversal of T? [4 points]

4. In class we defined the internal path length I and the external path length E, both measures of a binary tree. If that tree has n (internal) nodes, show that $E = I + 2n$. (This is exercise B.5-5, p 1180.) [8 points]

5. Consider the tree of Figure 12.2 on p 290. How many different permutations of the values it contains, when inserted in that order, will yield this particular tree? [8 points]

6. How many permutations of $1, 2, \ldots, n$ yield a skew tree? (Since any one skew tree is generated by just one permutation, this question is asking for the number of skew trees of n nodes.) [5 points]

7. *(Search path splitting a BST)* Exercise 12.2-4, p 293. [4 points]

Total: 40 points

Notes:

- *(Q2)* Consider the following three formulas:

 - $height(null) = -1$

 - $height(p) = 1 + \max\{height(p.left), height(p.right)\}$

 - $balFac(p) = height(p.left) - height(p.right)$

 These suggest that you may want to compute the height and the balance factor at the same time. You may simply print out the balance factors, in any order.

- *(Q3)* To get T', imagine the first-child as a left pointer and the next-sibling as a right pointer.
• (Q4) We had \(I = \sum_{v \in V} d(v) \), where \(V \) is the set of nodes and \(d(v) \) is the depth of a node. \(E \) is defined similarly, over all external nodes. You will want to use induction.

• (Q5) Consider a tree where

 – the left subtree contains \(n \) nodes and is generated by \(r \) permutations
 – the right subtree contains \(m \) nodes and is generated by \(s \) permutations

Then the whole tree contains \(n + m + 1 \) nodes and is generated by \(r \cdot s \cdot \binom{n+m}{n} \) permutations.