21.3 Tarjan’s off-line least-common-ancestors algorithm

The least common ancestor of two nodes u and v in a rooted tree T is the node w that is an ancestor of both u and v and that has the greatest depth in T. In the off-line least-common-ancestors problem, we are given a rooted tree T and an arbitrary set $P = \{[u, v]\}$ of unordered pairs of nodes in T, and we wish to determine the least common ancestor of each pair in P.

To solve the off-line least-common-ancestors problem, the following procedure performs a tree walk of T with the initial call $\text{LCA}(\text{root}[T])$. Each node is assumed to be colored WHITE prior to the walk.

\begin{verbatim}
LCA(u)
1 MAKE-SET(u)
2 ancestor[FIND-SET(u)] ← u
3 for each child v of u in T
4 do LCA(v)
5 UNION(u, v)
6 ancestor[FIND-SET(u)] ← u
7 color[u] ← BLACK
8 for each node v such that $\{u, v\} \in P$
9 do if color[v] = BLACK
10 then print “The least common ancestor of”
11 u “and” v “is” ancestor[FIND-SET(v)]
\end{verbatim}

a. Argue that line 10 is executed exactly once for each pair $\{u, v\} \in P$.

b. Argue that at the time of the call $\text{LCA}(u)$, the number of sets in the disjoint-set data structure is equal to the depth of u in T.

c. Prove that LCA correctly prints the least common ancestor of u and v for each pair $\{u, v\} \in P$.

d. Analyze the running time of LCA, assuming that we use the implementation of the disjoint-set data structure in Section 21.3.