Project 2:
N-Body Simulation

Project Outline
Model
Implementation
Parallel Algorithm

Reading
- MPI information on-line
 - don’t overlook tutorials
- CACM article
 - http://portal.acm.org: search for “seitz cosmic”
- Wilkinson & Allen, pp. 126-131

Project Outline
The goals of the N-Body project are:
- learn more about an important class of computational science problems
- gain experience with MPI
- examine trade-offs involved in parallel programming

Outline:
- implement very simple sequential method
- verify using solar system data
- parallelize using MPI
- experiment with larger data sets
- maybe consider other methods

Review: Force Calculations
N-Body simulations are based on models of energy and force
- a “force field” defines the sum of forces acting on a body
- sum over different types of forces (bond, angle, electrostatic, ...)
- sum pairwise interactions with other bodies

Use a time-stepping method to carry out the simulation
- define location of all bodies at $t = 0$
- for each time step:
 - compute forces acting on each body
 - compute positions of bodies at t_{i+1} as a function of positions and forces at t_i
- we’ll use a fixed size time step, Δt
Mathematical Model

- For this project, the only force is gravity
 - no springs, no collisions...

- Newton’s law of gravitational attraction:
 \[
 \vec{F}_{ab} = -Gm_am_b \frac{\vec{r}_a - \vec{r}_b}{||\vec{r}_a - \vec{r}_b||^3}
 \]

- Note the force pushing A toward B is balanced by an equal force pushing B toward A

Mathematical Model (cont’d)

- Notes:
 - masses \((m)\) and the gravitational constant \((G)\) are scalars
 - positions \((r)\) and forces \((F)\) are vectors
 - the norm of the difference in positions is also a scalar
 - the force is inversely proportional to the square of the distance
 - the minus sign points the force in the right direction (see next slide)

\[
\vec{F}_{ab} = -Gm_am_b \frac{\vec{r}_a - \vec{r}_b}{||\vec{r}_a - \vec{r}_b||^3}
\]

Vector Operations

- The vector difference \(A - B\) is a vector that points toward \(A\)
- Multiplying the difference by a negative constant "turns it around"
- Note the units in the force equation:
 - the RHS is a vector (the difference in positions times a bunch of scalars)
 - the LHS is a vector pointing in the direction of the force

\[
\vec{F}_{ab} = -Gm_am_b \frac{\vec{r}_a - \vec{r}_b}{||\vec{r}_a - \vec{r}_b||^3}
\]

Summing Forces

- When there are three or more bodies, the force on one body is the sum of the pairwise forces with respect to all the other bodies
Equations for Motion

Since the bodies we’re simulating are moving, we need to include velocity and acceleration in the model.

Both are vectors.

From Newton’s equation derive a formula for acceleration:

\[\vec{F} = m \vec{a} \]
\[\vec{a} = \vec{F} / m \]

Over a small time step, the change in velocity and position are:

\[\Delta \vec{v} = \vec{a} \times \Delta t \]
\[\Delta \vec{r} = \vec{v} \times \Delta t \]

Simulator Outline

Assign a mass and initial position and velocity vectors for each body.

At each time step:

for each body i
 a = 0
 for each body j ≠ i
 a[i] += accel(i,j) // see next slide
 for each body i
 v += a[i] * dt
 r += v * dt // use new v

Computing Acceleration

The formula for the acceleration of body i, as a function of the sum of the forces from each other body j:

\[\vec{F}_{ab} = -Gm_am_b \frac{\vec{r}_a - \vec{r}_b}{||\vec{r}_a - \vec{r}_b||^3} \]

\[\vec{a}_i = -G \sum_{j \neq i} m_j \frac{\vec{r}_i - \vec{r}_j}{||\vec{r}_i - \vec{r}_j||^3} \]

Implementation

The project tar file has C++ code you can use.

nbody.C

- program outline (main(), ...)
- constants G and dt
 - (number of seconds in a day)
- mass and initial positions and velocities of sun and nine planets
Implementation (cont’d)

- `vector.h`
- `vector.C`
- `vdemo.C`
 - A vector class, for vectors in 3-space
 - operations on vectors (+, -,)
 - norm and other methods
- `Makefile`

Suggestion

- Compile and run `vdemo` -- make sure you understand how the vector class works
- Define a `Body` class with the necessary state variables (mass, position, velocity) and methods (force calculation, movement)
- Develop a sequential program:
 - Have your program print positions of each body at each time step
 - The output should be in the form of a text file that can be loaded into a program that can draw orbits (R, Matlab, etc)
 - see “visintro” slides for R commands
 - Verify the program works by testing it on the solar system data

Parallel Implementation

- A simple SPMD parallel algorithm for the N-Body project uses a “token ring”
- Use one process per body
 - note: “process”, not “processor”
 - later this term we’ll talk about mapping processes to processors
- Process i will be the home of body i
- Tokens carrying descriptions of bodies are passed between processes

Parallel Implementation (cont’d)

- Operations in process i at each time step:

  ```
  initialize A to 0
  create token for body $i$
  repeat N-1 times:
  pass token to next
  read token $j$ from previous
  $A += \text{accel}(i,j)$
  move body $i$
  ```
Parallel Implementation (cont’d)

- To print results, have each process mail current position to process 0
- Time complexity
 - sequential: $O(n^2)$
 - parallel with p processors: $O(n^2/p)$
 - parallel with one processor per process: $O(n)$

Chordal Ring

- An improvement: include acceleration A as part of the token
- Have process i compute $x = \text{force}(i,j)$
 - add x/mb to local A
 - add $-x/ma$ to token A
- When token is half way around the ring, send it back to its home node
- Half as many force calculations
- Half as many messages

Warning: note asymmetry when the number of processes is even...

Scaling Up

- The message and process overhead in this simple method will be very high when there are thousands of bodies
- A more general solution:
 - store n/p bodies in each home node
 - put the same number of body descriptions in each token
- When a process receives a token, it does $(n/p)^2$ force calculations
 - don’t forget the home node interactions....

Latency Hiding

- Another important technique for minimizing communication costs is to use overlap communication and computation
 - known as latency hiding
 - uses asynchronous sends
- Every process should have one or more tokens in its input queue while it is working on its current token
Latency Hiding (cont’d)

- If a process never has an empty queue it won’t have to wait for messages
- Communication overhead is limited to the amount of time it takes to deliver a message from the queue to the process
 - Historical note: Intel Paragon and other successors to the original hypercube had two CPUs per node; one was dedicated to message passing

Further Efficiency

- Topics for future lectures:
 - restructuring the representation of bodies to use BLAS linear algebra routines
 - $O(n \log n)$ sequential algorithms and parallelization of those methods
 - relation to hydrodynamics

Movie

- Get out the popcorn...
- An n-body simulation involving 100 million bodies:
 - Milky Way vs Andromeda [http://www.news.utoronto.ca/bin/000414b.asp]
 - The two galaxies are moving toward each other at 500,000 km/hr
 - don’t worry: “collision” is still 3 billion years away
 - 4 days of computing on 1152 processors at SDCC