Introduction to N-Body Simulations

Background: Discrete Models
Molecular Dynamics

Discrete Models
- The course introduction slides mentioned two types of models used in CSE
 - Continuous
 - uses numeric methods to solve differential equations
 - “top-down” approach
 - example: computational fluid dynamics
 - Discrete
 - aka ab initio models
 - simulation of objects from the domain of study
 - example: n-body methods

Population Models
- An example of both approaches to understanding a complex system: population models in ecology
 - Classic method: Lotka-Volterra equations to describe predator-prey interactions
 - see: http://www.math.duke.edu/education/ccp/materials/diffeq/predprey/pred1.html
 - Goal: a set of equations to predict the sizes of two interacting populations over time
 - example: Canadian lynx and showshoe hare

Reading
- Molecular Dynamics: An Introduction
 - Lloyd Fosdick, Univ of Colorado
 - PDF on-line: MolecularDynamics.pdf
Predator-Prey Model

- Let \(x(t) \) be the size of the prey population at time \(t \)
- \(y(t) \) is the size of the predator population at \(t \)
- Without predation, prey population will grow continuously
 - the change in population depends on the current size of the population:
 \[
 \frac{dx}{dt} = ax
 \]
 where \(a \) is a parameter that determines growth rate
 - when there are predators, the size of the prey population decreases by a factor that depends on the interaction of the two populations:
 \[
 \frac{dx}{dt} = ax - bxy
 \]

Predator-Prey Model (cont’d)

- The predator population will decrease steadily when there is no food:
 \[
 \frac{dy}{dt} = -cy
 \]
- The predator population increases by a factor that depends on interaction with prey:
 \[
 \frac{dy}{dt} = -cy + pxy
 \]
- The final model is a dynamic system that does not have an analytical solution:
 \[
 \frac{dx}{dt} = ax - bxy
 \]
 \[
 \frac{dy}{dt} = -cy + pxy
 \]

Modeling Packages

- There are several software packages that allow users to define equations, set initial conditions, plot results
 - From Dan Udovic’s lab: JavaDemography
 http://darkwing.uoregon.edu/~bsl
 - A commercial package: Stella (http://www.hps-inc.com)

Individual Based Modeling

- The discrete approach to population simulation is known as individual-based modeling
 - create a set of objects representing individuals
 - define rules for interactions between individuals and their environment
 - a time-stepped simulator computes the next state of the system as a function of the current state
 - Familiar example: Conway’s “Game of Life”
 - cellular automaton
 - object survives if \(n \ldots m \) neighboring cells have objects
IBM for Lynx and Hare

- A cellular automaton can simulate the lynx/hare model
- Define a territory as a rectangular grid
- A cell can hold zero or more animals of each type
- Rules for population size
 - probability of reproduction
 - probability of dying
- Rules for movement
 - direction
 - max cell occupancy
 - attraction/repulsion

IBM for Lynx and Hare (cont’d)

- Initialize the system with a random distribution of “objects” from each population
- Run the model for some number of time steps
- At each time step:
 - compute interactions in each cell (i.e. predation)
 - add new objects (“births”)
 - move objects (migration)

Aside: Boundary Conditions

- How should the model treat events at the boundaries?
- A common situation in scientific models
- One solution: periodic boundaries
- The simulated system is a small patch of a larger system
 - in lynx/hare: wraparound
 - animal moving off one edge reappears on the other side

Aside: Hexagonal Grids

- How should movement be defined?
- If an animal can only move to neighboring cells, a diagonal move requires two time steps
- But the center of a diagonal neighbor is further than the center of an orthogonal neighbor, so diagonal moves should not be as frequent
- One solution: hexagonal grids
- See: Discrete Global Grids (http://www.sou.edu/cs/sahr/dgg)
IBM vs DS

IBMs have advantages and disadvantages

Pro:
- flexibility in modeling variation (age, sex, health, etc)
- interactions with environment (terrain, other conditions)
- expands to multiple species

Con:
- requires quantifying, modeling many different attributes, behaviors
- lack of formalism -- what do the results mean?
- difficulty of verifying, analyzing model

Molecular Dynamics

Molecular Dynamics (MD) is important application area for N-body methods
- molecular biology: protein-protein and protein-DNA interactions

Typical model is for a conservative system
- no external forces
- all motion is determined by internal interactions

Forces are additive
- sum over pairwise interactions, e.g. electrostatic forces
- sum over different types of forces

Force field: collection of forces acting on a body at a point in space

Energy

For many systems there is a formula for energy

In a conservative system, force is defined by the energy gradient:

\[f(r) = -\nabla \phi(r) \]

Notation:
- \(r \) position (coordinate)
- \(\phi(r) \) potential energy
- \(f(r) \) force

2D and 3D Models

Many forces are a function of the distance between two bodies
- Examples: electrostatic force, gravity

In 2D and 3D models, the distance between two bodies is the norm of the difference of their positions

\[d = ||r|| = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2} \]
Hooke’s Law

- Use Hooke’s law to model a system in which two bodies are connected.
- When the system is at an equilibrium (distance = \(x_e \)) there is no energy.
- Moving the bodies closer or further apart increases potential energy.
- Force attracts (\(f < 0 \)) or repels (\(f > 0 \)) bodies.
- Example:
 - atoms connected by a chemical bond

\[
\phi(x) = \frac{k}{2} (x - x_e)^2 \\
\quad f(x) = -k(x - x_e)
\]

Lennard-Jones Potential

- The Lennard-Jones potential function was originally used to model atoms in an argon gas.
- Atoms are not connected by bonds.
- When distance is above a threshold there is a weak attraction.
- When atoms are too close their electron orbits overlap and there is a very strong repulsion.

\[
\phi(d) = \left(\frac{1}{d^{12}} - \frac{1}{d^6} \right)
\]

Hard Sphere Model

- In a hard sphere (“billiard ball”) model there is no interaction between bodies until they collide.
- Model elastic collisions:
 - same total kinetic energy before collision and after collision
 - no deformation
 - no spin
- Collisions modify the velocity vectors of the bodies.
- Used to model gases, liquids.

Dreiding Force Field

- One of the papers on the class web site describes an algorithm to compute the potential energy in a DNA molecule.
- Dreiding force field: sum of seven energy terms (next slide)
 - use in energy minimization studies
 - find the “best” (least energetic) configuration of atom
 - alternative to X-ray crystallography
- 455/555 project in 1994
 - Tom Rush: grad student in Peticolas lab at
 - implemented in MPL (data-parallel dialect of C) on SIMD MasPar-1
 - published in CS conference (HICSS)
Dreiding Force Field (cont’d)

- Bond energy
 - difference from equilibrium bond length
 \[\sum \frac{1}{2} k_b (R - R_0)^2 \]

- Angle energy
 - same, but for divergence from equilibrium angle
 \[\sum \frac{1}{2} k_a (\theta - \theta_0)^2 \]

- Torsion energy
 - “twist” in central bond connecting group of 4
 \[\sum \sum \frac{1}{2} k_t \left[1 - d \cos(n \phi) \right] \]

- Inversion energy
 - base of pyramid is angle deviation in height of fourth atom
 \[\sum \frac{1}{2} C \left(\cos \omega - \cos \omega_0 \right)^2 \]

N-Body Project

- Next project this term:
 - simple n-body simulation
 - only force is gravity
 - compute pairwise interactions of body with every other body
 - sum of forces determines update to velocity, position

- Details next lecture
 - equations of motion
 - time-stepped implementation
 - parallel algorithms

Dreiding Force Field (cont’d)

- Coulombic attraction
 - non-bonded interaction based on static charge on each atom
 \[\sum \frac{Q_i Q_j}{4 \pi \varepsilon_0 R_{ij}^2} \]

- van der Waals attraction
 - a version of the Lennard-Jones force
 \[\sum D_{6} \left[\left(\frac{R_0}{R_{ij}} \right)^{12} - 2 \left(\frac{R_0}{R_{ij}} \right)^6 \right] \]

- Hydrogen bond interaction
 - a quantum level interaction
 - single electron in H attracted toward C in CH bond, altering static charge of H
 \[\sum D_{6} \left[5 \left(\frac{R_0}{R_{ij}} \right)^{12} - 6 \left(\frac{R_0}{R_{ij}} \right)^6 \right] \cos^4 \theta_{ij} \]