Lecture 13

Chapter 13 Information Search and Visualization

Information Search and Visualization

• Who earns > $50,000 among the residents of Eugene, Oregon?

Stages of Action in Human-Computer Interaction
Introduction

• Information activities:
 – Information gathering
 • Knowing where to look and availability
 – Searching versus Browsing
 • A know-item-search versus making sense and discovering
 – Filtering
 – Information evaluation
 • Is this what I want?
 – Information analysis and interpretation
 • Summarizing information
 • Comparing information

• Information activities are on-going, iterative tasks
 – Interruption and resumption
 – Trace of the information gathering tasks
 – Archiving and annotating

Introduction

• Problem: Huge volumes of computer-stored data available:
 – Databases
 • Textual document libraries
 – Structured, relational databases
 – Relations have records
 – Records have fields, and fields have values
 – Set of items (10 to 100,000)
 • Multimedia document libraries
 – Contains images, sound, video, animations, etc
 – Websites
 – Contains network of websites with network of web pages
 – Contains rich, linked, information resources
 – Digital archives are more loosely organized
 – Directories contain metadata
 – Websites and Databases: Data mining
 – Data warehouses and data marts
 – Knowledge networks or semantic webs

Introduction

BUT searching and discovering is difficult:

• Traditional interfaces have been difficult for novice users
 – Command Languages
 • Complex commands
 • Boolsen operation
 • Unintuitive concept
 • EXAMPLE: SQL query language to relational databases

• Traditional interfaces have been inadequate for expert users
 – Difficulty in repeating searches across multiple databases
 – Weak methods for discovering where to narrow broad searches
 – Poor integration with other tools
Introduction

• Solution: Developing more powerful search and visualization methods, integration of technology with task
 - Searching in Textual Documents and Database Querying (Chapter 14.2)
 - From form in HTML instead of SQL query language
 - Customizable search options and displays using control panels
 - Google uses statistical frequency of co-occurrence of words to determine meaning
 - Multimedia Document Searches (Chapter 14.3)
 - Pattern recognition for picture searching
 - Advanced Filtering and Search Interfaces (Chapter 14.4)
 - Designers are just learning how to present large amounts of data in orderly and user-controlled ways (Chapter 14.5)
 - Information Visualization

Searching in textual documents and database querying (Chap 14.2)

• Traditional information finding resources
 - Finding aides
 - Table of contents, Indexes, Description introductions, Subject classification, Key-Word-In-Context (KWIC)
 - Preview and overview surrogates
 - Searching in structured relational database systems well established task using SQL command language
 - Users write queries that specify matches on attribute levels
 - Example of SQL command
 - SELECT DOCUMENT#
 - FROM JOURNAL-DB
 - WHERE (Date >= and Date=< 1998)
 - and (Language = English or French)
 - and (publisher = ASIST or HFES or ACM).
 - SQL has powerful features, but it requires 2 to 20 hours training
 - While SQL is a standard form-fillin queries have simplified query formulation
 - Finding a way not to overwhelm novice users is a challenge

Searching in textual documents and database querying

• New searching and querying interfaces
 - WWW search engines
 - Google, Yahoo, etc.
 - Natural language integration into text searching
 - Google uses statistical frequency of co-occurrence of words to determine meaning
 - World Wide Web search engines have greatly improved their performance by using statistical data and the information on the site’s hyperlink structure
 - WWW to Database interfaces
 - Form fills in HTML instead of SQL query language
 - Customizable search options and displays using control panels
 - Evidence shows that users perform better and have higher satisfaction when they can view and control the search
Searching in textual documents and database querying

- Ethical problems

Searching in textual documents and database querying

- Searching & Querying User Interfaces: Basic tasks
 - Overview
 - Gain an overview of the entire collection
 - Adjoining detail view
 - The overview might contain a movable field-of-view box to control the contents of the detail view
 - Allowing zoom factors of 3 to 30
 - Fish-eye view
 - Zoom
 - Zoom in on items of interest
 - Allows a more detailed view
 - Need to maintain context
 - Particularly important for small displays
 - Filter
 - Filter out uninteresting items
 - Allows user to reduce size of search

Searching in textual documents and database querying

- User Interfaces: Basic tasks (cont.)
 - Details-on-Demand
 - Select an item or group and get details when needed
 - Useful to pinpoint a good item
 - Usually click on an item and review details in a separate or pop-up window
 - Relate
 - View relationships among items
 - Use human perceptual ability – proximity, containment, connected line, color coding
 - Example: Set director’s name, and view all movies with that director
 - History
 - Keep a history to allow undo, replay, and progressive refinement
 - Allows a mistake to be undone, or a series of steps to be replayed
 - Extract
 - Extract the items or data
 - Save to file, print, or drag to another application
Searching in textual documents and database querying

- **Example:** ZFIN database
 - WWW Genetics database for zebrafish
 - Used by international research scientists
 - Developed at UO by S. Douglas (CS) and Monte Westerfield (Neuroscience Institute), 1994-2005

<http://zfin.org>
- Search for gene "cox"
- Search for mutant "cyclops"

Multimedia document searches (Chapter 14.3)

- Searches for databases and textual documents are good, but multimedia searches are in a primitive stage
- Current multimedia searches require descriptive documents or metadata searches
- Search by date, text captions, or media is possible
- Useful to have computers perform some filtering
- New systems will incorporate powerful annotation and indexing, with better search algorithms and browsing

Multimedia document searches (Chapter 14.3)

- **Image Search:**
 - Finding photos with images such as the Statue of Liberty is a challenge
 - Query-by-Image-Content (QBIC) is difficult
 - Search by profile (shape of lady), distinctive features (torch), colors (green copper)
 - Use simple drawing tools to build templates or profiles to search with
 - More success is attainable by searching restricted collections
 - Search a vase collection
 - Find a vase with a long neck by drawing a profile of it
 - Critical searches such as fingerprint matching requires a minimum of 20 distinct features
 - For small collections of personal photos effective browsing and lightweight annotation are important
Multimedia document searches (Chapter 14.3)

• Map Search
 – On-line maps are plentiful
 – Search by latitude/longitude is the structured-database solution
 – Today’s maps are allow utilizing structured aspects and multiple layers
 • City, state, and site searches
 • Flight information searches
 • Weather information searches
 • Example: www.mapquest.com
 – Mobile devices can allow “here” as a point of reference

Multimedia document searches (Chapter 14.3)

• Design/Diagram Searches
 – Some computer-assisted design packages support search of designs
 – Alters searches of diagrams, blueprints, newspapers, etc.
 – E.g. search for a red circle in a blue square or a piston in an engine
 – Document-structure recognition for searching newspapers
• Sound Search
 – MIR supports audio input
 – Search for phone conversations may be possible for speaker independent basis
• Video Search
 – Provide an overview
 – Segmentation into scenes and frames
 – Support multiple search methods
 – Infomedia project
• Animation Search
 – Prevalence increased with the popularity of Flash
 – Possible to search for specific animations like a spinning globe
 – Search for moving text on a black background

Advanced filtering and search interfaces (Chap 14.4)

For advanced uses there are alternatives to form fill-in query interfaces:

• Filtering with complex boolean queries
 – Problem with informal English, e.g. use of “and” and “or”
 – Venn diagrams, decision tables, and metaphor of water flowing have not worked for complex queries
• Dynamic Queries - Adjusting sliders, buttons, etc. and getting immediate feedback
 – “direct-manipulation” queries
 – Use sliders and other related controls to adjust the query
 – Get immediate (less than 100 msec) feedback with data
 – Dynamic HomeFinder and Blue Nile
 – Hard to update fast with large databases
• Query previews present an overview to give users information and the distribution of data and thereby eliminate undesired items
• Faceted metadata search
 – Integrates category browsing with keyword searching
 – Flameco
Interactive Graphics

Advanced filtering and search interfaces (Chap 14.4)

- Collaborative Filtering
 - Groups of users combine evaluations to help in finding items in a large database
 - User “votes” and her/his info is used for rating the item of interest
 - E.g. a user rating sex restaurants highly is given a list of restaurants also rated highly by those who agree the six are good
- Multilingual searches
 - Current systems provide rudimentary translation searches
 - Prototypes of systems with specific dictionaries and more sophisticated translation
- Visual searches
 - Specialized visual representations of the possible values
 - E.g. dates on a calendar or seats on a plane
 - On a map the location may be more important than the name
 - Implicit initiation and immediate feedback

Summary

Problem: Huge volumes of computer-stored data available
- Databases
 - Structured relational Databases
 - Multimedia document libraries
- Websites
 - Websites and Databases: Data mining

BUT searching and discovering is difficult:
- Traditional interfaces have been difficult for novice users
- Traditional interfaces have been inadequate for expert users
- Difficult in reporting and live access random databases
- Weak methods for discovering where to narrow broad searches
- Poor integration with other tools

Solution: Developing more powerful search and visualization methods, integration of technology with task
- Searching in Textual Documents and Database Querying (Chapter 14.2)
- Multimedia Document Searches (Chapter 14.3)
- Advanced Filtering and Search Interfaces (Chapter 14.4)
- Designers are just learning how to present large amounts of data in orderly and user-controlled ways

"Information Visualization"