Recursion

- Recursion as problem solving technique
- Learning to think recursively
- Knowing when to use recursion
- Coding recursively in Java
- Limitations and efficiency of recursive programming

Thinking Recursively

- Our usual approach to understanding complexity is to break things into smaller, more understandable pieces
 - For example, we divide a program into classes and methods
 - The program is then executed sequentially
 - We may have repetitions which we can model with loops
- This is a form of "Divide and Conquer"
 - We reduce the problem to more manageable pieces
- Recursion is another form of reduction
 - The difference is that with recursion, we don't divide into pieces
 - Instead, we reduce the complexity to a smaller version of the same thing
Normally, we would think that defining something with the term being defined can not be a useful definition

- But consider this definition of a list of integers

 A list of integers is either a single integer or it is one integer followed by a comma and a list of integers.

- Do you believe that this properly defines a list?
 - Certainly the definition works for a list of one

- What about a list of two integers?
 - There is a first integer, and after it is the second, which by the definition is a list of integers
 - So this fits the definition

- What about a list of three integers?
 - There is a first integer, and after it are two integers, which we just noted fits the definition
 - So now this fits the definition, too

- We could keep going
 - We are defining a list as the first item, and then a smaller list

Recursive Definitions

- Definition of factorial as you might find in a math text:

 \[N! = \begin{cases}
 1 & \text{if } N \leq 1 \\
 N \times (N-1)! & \text{if } N > 1
 \end{cases} \]

 - base case
 - recursive part

- Notice that the definition of factorial uses the definition of factorial

- Use the definition to determine the value of 5!

 \[5! = 5 \times 4! \]
 \[4! = 4 \times 3! \]
 \[3! = 3 \times 2! \]
 \[2! = 2 \times 1! \]
 \[1! = 1 \]

 \[5! = 5 \times 4 \times 3 \times 2 \times 1 = 120 \]
Recursion for Problem Solving

- In general, problem solving is done by decomposing a problem into smaller parts which are easier to solve
 - We solve all the pieces, and together they solve the problem
- A recursive approach decomposes a problem into smaller problems of the same type as the original
 - Solving the smaller problem allows us to solve the larger one
 - Eventually we get to a problem that is trivial to solve (the base case)
- Not all problems should be approached with recursion
 - Solving the smaller problem must be relevant to solving the larger problem
 - For example, knowing the square root of 1 is 1 does not easily help us solve the square root of 2

Recursive Solution Example

- A palindrome is a string that reads the same forward or backwards
 - Problem: Determine if a string is a palindrome.
- Recursive approach: If the first and last characters match and the "middle" is a palindrome, then we have a palindrome
 - The "middle" is the smaller problem (a shorter string to determine whether it is a palindrome)
 - The base case is a string with no "middle" (0 or 1 chars), which is a palindrome
 - Knowing the middle is a palindrome is relevant to knowing the whole string is a palindrome if we also know the first and last characters match
- Recursive algorithm
 - If the string is length zero or one, it is trivially a palindrome
 - If the first and last characters match, and the remaining characters (from the second through the next to last) form a palindrome, then the whole string is a palindrome
 - Otherwise, the string is not a palindrome
Programming Recursive Solutions

- In Java, a method can call any other method, including itself
 - We can use this to design a recursive method
- When a method calls itself, there is a new invocation of the method
 - The new invocation has its own environment (parameters, local variables)
 - When that invocation calls itself, there is now a third invocation
 - If this keeps happening, when will we ever return?
- For a recursive method to work correctly, there must be a base case
 - A condition to determine that the method does not call itself again
- To implement recursion, there must be a recursive case of the method
 - A condition to determine that the method should call itself
 - The recursive call should make progress toward the base case
 - Just as the iteration in a loop progresses toward the terminating condition

Tracing Recursive Calls

```java
boolean isPalindrome(String s) {
    boolean ret;
    int end = s.length()-1;
    if (end <= 0) {
        ret = true;
    } else if (s.charAt(0)==s.charAt(end)) {
        String mid = s.substring(1,end);
        ret = isPalindrome(mid);
    } else {
        ret = false;
    }
    return ret;
}
```

Example:
```
isPalindrome("racecar") (1)
  isPalindrome("aceca") (2)
    isPalindrome("cec") (3)
      isPalindrome("e") (4)
```

PalindromChecker.java
Recursive Programming

- A danger for recursive methods is that the recursion never ends
 - Base case might have been omitted in error
 - Logic to determine base case might be wrong
 - Values that are supposed to get closer to base case might be incorrectly growing away
- What happens if recursion does not end?
 - The method call stack keeps growing
 - Eventually memory will be exhausted
 - A Stack Overflow exception will terminate the program
- Important to design recursion very carefully
 - Errors are usually harder to see than in loops

Using Recursion

- Recursion can be a very useful way of finding solutions and understanding the nature of problems
 - A recursive solution is often simpler to state and comprehend
- But a recursive implementation may not be the best programming solution
 - Recursion can be expensive because of the stack use
 - Recursion can be dangerous because of subtle errors
- For example, computing factorial is probably best done with a loop rather than a recursive method
- Important to choose the best implementation for a solution
- But, some programming languages do not have loop constructs and only have recursion
 - And some languages do not permit recursive methods
 - Even so, thinking recursively can help understand and solve problems
Another Recursion Example

- Question: how many subsets are there for a set with N elements?
- Some observations:
 - The empty set \(\{ \} \) has **one** subset, namely itself
 - A set with one element \(\{ x \} \) has **two** subsets, namely \(\{ \} \) and \(\{ x \} \)
 - A set with two elements \(\{ x, y \} \) has **four** subsets, namely \(\{ \} \), \(\{ x \} \), \(\{ y \} \), and \(\{ x, y \} \)
- So \(\text{numSubsets}(0) \) is 1, \(\text{numSubsets}(1) \) is 2, \(\text{numSubsets}(2) \) is 4
- We can see a pattern and base cases, but how do we think recursively about this problem?

Subset Recursion Example

- Suppose we have a set \(S \) with \(N \) elements
- Can we relate the subsets of that set to knowledge about subsets of a smaller set? I.e., can we relate \(\text{numSubsets}(N) \) to smaller values?
- Certainly each subset of a subset of \(S \) is also a subset of \(S \).
- Let’s remove one element (call it \(x \)) from \(S \), and call the resulting set \(Q \)
 - \(Q \) has \(N-1 \) elements and \(\text{numSubsets}(N-1) \) subsets
- Now think about each subset of \(S \).
 - Either it contains the element \(x \), or it does not.
 - The subsets that **do not** contain \(x \) are the subsets of \(Q \), so there are \(\text{numSubsets}(N-1) \) of them.
 - For each subset of \(S \) that **does** contain \(x \), the rest of the elements are a subset of \(Q \), so there are \(\text{numSubsets}(N-1) \) of them.
Subset Recursion Example

- Putting this together as a recursive formula:
 - Base case:
 - If N == 0, numSubsets(N) is 1
 - Recursive case:
 - If N > 1, numSubsets(N) is 2 * numSubsets(N-1)
- We have a recursive formula, and from this can see that the number of subsets is 2^N

Towers of Hanoi

- Solving the Towers of Hanoi puzzle is a good example of recursion
- The puzzle has three pegs and disks of different sizes that slide on to the pegs
- Starting configuration is to have all disks on one peg, ordered by size, with largest at bottom of pile
- Goal is to move the entire pile to another peg
- Rules
 - Only one disk can be moved at a time
 - It is illegal to ever place a larger disk on top of a smaller one
Towers of Hanoi

- Goal: move stack of disks from first peg to last peg
- Can only move one disk at a time
- Cannot place a larger disk on a smaller one
- Disks have to be on a peg (except the moving one)

Towers of Hanoi

- Four disk puzzle
- Naive approach: just move the disks to the middle peg, one by one, till we get biggest to move to last peg

 - First move top disk to peg 2
 - Then move next disk to peg 2

 Oops! A bigger disk is on a smaller one
Towers of Hanoi

- Let's think recursively...
- Suppose we knew how to move a stack of three disks from one peg to another
- Then we could get to this:

![Diagram of Towers of Hanoi]

And now we can move the big disk from the first peg to the last (do you think this is our base case?)
- So we could get to this:

- If only we knew we could move a stack of three...
 - Gee, that sounds familiar...
Towers of Hanoi

- Putting it together: moving the top 3 requires first moving the top 2 which requires moving the top 1 ...

Recursive Java method moveDisks to move a stack of disks of a given size
- Starting peg and destination peg are given
- Remaining peg is used as a spare

Base case
- Stack has only one disk, just move it

Recursive case
- Use method to move smaller stack to spare (all but one disk)
- Then move the one disk to destination
- Then move the other disks on top
- Note recursive method is called twice in the recursion

Recursion provides a small and elegant solution to the problem
- Iterative solution is possible, but much more complex and difficult

TowersOfHanoi.java
Recursion

- Recursion is often the best way to think about and solve certain types of problems
 - Finding shortest paths in graphs
 - Locating items in hierarchical tree structure
 - Exploring possible paths in maze or graph
 - Drawing fractals – figures which have smaller copies of themselves
- Choice of recursion versus iteration should be based on nature of problem and limitations of implementation
- The best solution is the one that feels most intuitive and is easiest to understand