1. Draw the binary tree whose inorder traversal is `epocarduimstb` and whose preorder traversal is `copemuraditsb`. Give the level order traversal of that tree. [5 points]

2. The balance factor of an internal node `v` of a binary tree is the difference between the heights of the left and right subtrees of `v`. Write a recursive routine which will print the balance factors of all nodes in a binary tree. What is the running time of this routine? [6 points]

3. Consider an ordered tree `T` and a binary tree `T'` representing it, using the first-child next-sibling representation (section 10.4). An inorder traversal of `T'` is equivalent to what kind of traversal of `T`? [4 points]

4. In class we defined the internal path length `I` and the external path length `E`, both measures of a binary tree. If that tree has `n` (internal) nodes, show that `E = I + 2n`. (This is exercise B.5-5, p 1091.) [8 points]

5. Consider the tree of Figure 12.2 on p 257. How many different permutations of the values it contains, when inserted in that order, will yield this particular tree? [8 points]

6. How many permutations of `1, 2, \ldots, n` yield a skew tree? (Since any one skew tree is generated by just one permutation, this question is asking for the number of skew trees of `n` nodes.) [5 points]

7. *(Search path splitting a BST)* Exercise 12.2-4, p 260. [4 points]

Total: 40 points

Notes:

- *(Q2)* Consider the following three formulas:
 - `height(null) = -1`
 - `height(p) = 1 + \max\{height(p.left), height(p.right)\}`
 - `balFac(p) = height(p.left) - height(p.right)`

 These suggest that you may want to compute the height and the balance factor at the same time. You may simply print out the balance factors, in any order.

- *(Q3)* To get `T'`, imagine the first-child as a left pointer and the next-sibling as a right pointer.
• *(Q4)* We had $\mathcal{I} = \sum_{v \in V} d(v)$, where V is the set of nodes and $d(v)$ is the depth of a node. E is defined similarly, over all external nodes. You will want to use induction.

• *(Q5)* Consider a tree where

 – the left subtree contains n nodes and is generated by r permutations
 – the right subtree contains m nodes and is generated by s permutations

Then the whole tree contains $n + m + 1$ nodes and is generated by $r \cdot s \cdot \binom{n+m}{n}$ permutations.