Simple Use of Oracles
CIS 622, Spring 2008

An oracle is a set of strings to which we have instant access during a computation. That is, if we are using the set B as an oracle, then we get to ask questions of the form $y \in B$ during a computation. We receive an answer yes/no in one step. This computation is said to be relative to B.

For example, consider the following deterministic algorithm for $TAUT$ using oracle SAT:

input: formula F

if ((not F) is in SAT)
 then REJECT
else ACCEPT

This shows that $TAUT \in P^{SAT}$. In words, $TAUT$ can be computed in (deterministic) polynomial time relative to SAT. (By the way, this also shows that $TAUT \leq_T P^{SAT}$.)

If C is a complexity class, we say that $P^C = \bigcup_{B \in C} P^B$. Thus, $TAUT \in P^{NP}$.

Looking ahead, we define $\Delta^P_2 = P^{NP}$ and $\Sigma^P_2 = N^{P^{NP}}$.

In class, we were starting to look at $P^{NP \cap coNP}$, with the goal of showing that $P^{NP \cap coNP} \subseteq NP$. So let $A \in P^B$, where $B \in NP \cap coNP$. Thus, there is a poly-time DTM M accepting A which operates relative to B. There are also poly-time NDTMs M_0 accepting \Bar{B} and M_1 accepting B.

The following nondeterministic algorithm (with no oracle) will accept A:

input: x

Simulate M on x.

When a query of the form "y in B" is made

Non-deterministically guess the answer Y or N to "y in B"

If the answer guessed was Y
 then simulate M_1 on y
 if M_1 reaches accepting state
 then return to simulation of M on x with answer Y
 if M_1 reaches rejecting state
 then halt and REJECT

If the answer guessed was N
then simulate M_0 on y
 if M_0 reaches accepting state
 then return to simulation of M on x with answer N
 if M_0 reaches rejecting state
 then halt and REJECT

When the simulation of M on x halts, if M accepts
 then ACCEPT
 else REJECT

Note that both P and P^C are closed under complementation. Thus, $P^{NP \cap coNP} \subseteq NP$ implies $P^{NP \cap coNP} \subseteq coNP$. Therefore, $P^{NP \cap coNP} \subseteq NP \cap coNP$.

Trivially $NP \cap coNP \subseteq P^{NP \cap coNP}$. So we have shown that
\[P^{NP \cap coNP} = NP \cap coNP. \]