1. exercise 11.5.18, p 275
2. exercise 11.5.24, pp 276-277

3. Show that the following definitions of the probabilistic class \(ZPP \) are equivalent. Below, \(\epsilon \) will be a small fixed constant, and \(c,k \) fixed integers. (More or less straightforward. See p. 254 for a definition of \(RP \).)

(a) \(ZPP = RP \cap coRP \).
(b) \(L \in ZPP \) iff \(L \) is accepted by a probabilistic TM \(M \) which operates in polynomial time \(cn^k \), outputs “yes” or “no” with probability \(1 - \epsilon \), and outputs “don’t know” with probability \(\epsilon \). Furthermore, if it answers “yes” or “no”, this answer will be correct.
(c) \(L \in ZPP \) iff \(L \) is accepted by a probabilistic TM \(M \) which answers correctly “yes” or “no” when it halts. It operates within time \(cn^k \) with probability \(1 - \epsilon \), and exceeds this time bound with probability \(\epsilon \).