Encryption

Background and history
Public key cryptography
Reading: Brooksheer (4.5)

John’s Book Club Recommendations

 - one of my favorite books
 - very well written, entertaining
 - for general audiences

- *Practical Cryptography*, by Niels Ferguson and Bruce Schneier
 - a handbook for people who want to implement a modern system
 - discusses security risks and methods to minimize them
 - very technical, but includes necessary math background

Caesar’s Code

- One of the earliest methods for writing secret messages: the Caesar cipher
 - used by Julius Caesar to send messages to his generals
 - simply shift each letter 3 positions
 - at the end of the alphabet “wrap around” to the front again

Examples:
- *veni, vedi, veci* → *yhql, yhgl, yhfl*
- *et tu, brute?* → *hw wx, euxwh?*

- Obviously not very secure by modern standards....
- In general, one can “rotate” by any number from 1 to 25
 - the “rot13” cipher is common in Internet posts
 - hide punchlines for riddles, other “obfuscation”, but not secrecy
Terminology

- **A cipher** is an algorithm for rewriting strings
 - the original message is called **plaintext**
 - the encoded message is the **ciphertext**
- In a **substitution cipher** each letter in the plaintext is replaced by a single letter in the ciphertext
 - the Caesar cipher is a substitution cipher
 - the “cryptoquote” puzzles in the newspaper are another example
- Messages encrypted with a substitution cipher are easily broken
 - letter frequency (e, t, a, o, i, n, ...)
 - letter pairs (th, sh, ... ee, oo but not ii, aa, uu)
 - common short words (a, i, in, of, the, ...)
- A more complex scheme uses polyalphabetic substitution
 - The Vigenère square provides an easy way to encrypt a message
 - choose a key word, e.g., “turing”
 - write the key along the top of the message, repeating as necessary
 - to encrypt a letter, find it in the top row, then scan down to the column indicated by the key
 - *turing*
 - *shakespeare* ➔ lbrsrylryrz
 - Much tougher to crack
 - e.g. s and e are both encrypted by y
- This method is harder to crack but it has a weakness
 - The same rows of the table are used repeatedly
 - The number of rows used depends on the length of the key
 - e.g. if the key is *turing* the six rows shown at right are used
 - This code is really just six regular substitution ciphers
 - Charles Babbage developed a method for deciphering this code

Vigenère Square

To decrypt a message reverse the process
- write the key above the ciphertext
- find a letter in the row labeled by the key
- *turing*
- *ulbr* ➔ *brute*

Note that one letter (1) decrypts to two different plaintext letters (x and u)
Vigenère Square

- The Vigenère square illustrates two important ideas in traditional cryptography
 1. The sender and receiver must share a **key**
 - the same key used to encrypt a message is used to decrypt a message
 - anyone who knows the key can decrypt a message
 2. Kerckhoff's Principle: the security of the scheme must depend on a **secret key but not a secret algorithm**
 - the method used to encrypt and decrypt messages must be straightforward and easy to implement
 - otherwise it would be easy to make a mistake while encrypting or decrypting

The Enigma

- An example of a simple algorithm generating a complex encryption was the method used by the Enigma machine
 - a mechanical computer used by the German military in WWII
- The main units were
 - keyboard for entering plaintext
 - rotors and other parts used for encryption (next slide)
 - lamps to display ciphertext
- The operator pressed a key, and the light for the encrypted form of the letter was turned on

The encryption was done by a set of three rotors
- each rotor made a single substitution
- the output of one rotor was passed as the input to the next rotor
- the third rotor was connected to a reflector, which did another permutation
- the signal went back through the rotors and then to the lamps
- The most important step: the **rotors changed after every keystroke**
 - think of an odometer, with one rotor changing on each key and others changing less frequently

The encryption key is the initial setting of the rotors
- there was also a plugboard that did some additional scrambling
- order and placement of rotors and plugs meant there were ~10^23 keys
- To decrypt a message, the receiver set his machine using the same key as the sender
 - if a ciphertext letter is typed on the keyboard it follows the same path as the plaintext letter, but in reverse
 - the machine advances one step and is ready for the next encrypted letter
The Enigma

- Ciphers generated by the Enigma were very difficult to crack
 - but cryptanalysts in Poland (before WWII) and England (during WWII) found small flaws
 - a letter could not be encrypted as itself
 - there were regularities in the texts that were encoded (e.g. daily weather report sent every day at 6AM)
- Alan Turing, working for British intelligence, designed a mechanical computer that helped break the codes

note tie clip...

Aside: Random Numbers

- The perfect encryption algorithm would be one that generates a random set of letters for a given input
 - the algorithm should change a letter into any other letter
 - someone trying to break the code should see just random gibberish
- That brings up an important question: What does it mean to be “random”?

...and this is uniform distribution
Aside: Random Numbers

- Algorithms (realized as programs or methods) implement functions
 - is it possible to define a function that generates random numbers?
- Ruby and other languages have pseudorandom number generators
 - they define sequences of the form \(x_{i+1} = f(x_i) \)
 - if the function is designed carefully the numbers appear to be random, even though they are defined by a formula
- An experiment in Ruby:
  ```ruby
  >>> a = []
  >>> 1000.times { a << rand(6)+1 }
  >>> a
  => [6, 5, 5, 6, 1, 6, 4, 6, 1, 3, 1, 6, 2, 2, 4, 3, 3, 2, 1, 5, 1, 1, 5, 5, 1, 6, 4, 1, 6, 5, 4, 2, 5, 2, 5, 2, 5, 1, 1, 3, 2, 5, 6, 2, 5, 1, 5, 6, 1, 3, 5, 3, 1, 4, 4, 4, 3, 1, 5, 3, 2, 2, 4, 6, 5, 1, 5, 2, 1, 6, 3, 3, 3, 3, 5, 4, 4, 1, 6, 1, 2, 1, 5, 4, 3, 3, 1, 2, 5, 1, 5, 3, 5, 6, 2, 5, .... ]
  ```

Aside: Random Numbers

- A common technique: the “linear congruential method”
 - pick three constants named \(a \), \(c \), and \(m \)
 - for any value of \(x \), the next \(x \) in the sequence is calculated by:
 \[
 x = (x \times a + c) \mod m
 \]
 - The “mod” function (\(\% \) in Ruby) is the important part of this equation
 - when \((x \times a + c)\) makes a value larger than \(m \) the mod function “wraps around”
 - the value of \(x \) seems to hop around at random in the range from 0 to \(m-1 \)

Back to Caesar

- The Caesar cipher can be described mathematically using the mod function
 - assign numbers to each letter: \(A = 0, B = 1, ... Z = 25 \)
 - the function for encrypting a letter \(x \) is
 \[
 (x + 3) \mod 26
 \]
 - It’s clear this function is far from random
 - there is an easily discovered pattern

- The key to this method is choosing the right values for \(a \), \(c \), and \(m \)
 - It’s actually a very subtle problem involving lots of number theory
 - bad choices lead to unexpected patterns
 - good choices generate every number between 0 and \(m-1 \) before repeating
 - there should also be no easily recognizable patterns between successive numbers
Back to Caesar

- A substitution cipher may appear to be random
 - the initial mapping for each letter of the alphabet is random
 - but the same mapping is used throughout the message
 - any patterns in the plaintext will show up in the ciphertext
 - cryptanalysts can look for common letters, letter pairs, or words

![Caesar Cipher Diagram]

Block Ciphers

- A widely used type of encryption is known as a **block cipher**
 - defined by a function f
 - $c = f(k, m)$
 - f is invertible: $m = f'(k, c)$
 - Break the plaintext into blocks of 8 letters
 - make a 64-bit number from each block
 - apply f to scramble the bits
 - repeat 16 times
 - For more info: read about DES, AES at Wikipedia

![Block Cipher Diagram]

Diffie and Hellman

- Modern block ciphers are very secure
 - but like any other system security depends on the security of keys
 - anyone who learns a key can read any message encoded with that key
- The key distribution problem:
 - for large groups one member has to create and distribute the key
 - if any one key is stolen the whole group is at risk
 - for individuals who want to communicate with n others, learn (and keep private) n separate keys
- In 1976 a research group at Stanford came up with an elegant solution based on prime numbers

![Diffie-Hellman Diagram]

Diffie and Hellman

- The Diffie-Hellman **key exchange protocol** uses a large prime number p and a smaller number g
 - g is chosen so that $1 \leq g \leq p-1$
 - [technical note: g is a generator for the group defined by p; every group has at least one generator]
- These numbers are made public
- Suppose A and B want to exchange messages
 - each chooses a random number r between 1 and $p-1$
 - each computes $g^r \mod p$ and sends it to the other person
 - each person computes a key using their own random number and the value received from the other person (see next slide)
The Diffie-Hellman method uses very large numbers, but we can see how it works with small numbers

we’ll use $p = 11$ and $g = 7$
suppose A chooses $x = 2$ and B chooses $y = 6$
the message from A to B is $g^x \mod 11 = 5$
the message from B to A is $g^y \mod 11 = 4$

A computes $g^x \mod 11 = 5$
B computes $g^y \mod 11 = 4$

Note that $g^{xy} = g^{yx}$ so both know the key is 5

Diffie and Hellman's method led to the idea of public key cryptography

each user maintains two keys, a public key and a private key

Anyone can send A (who has public key g^x) a secure message by picking a random y and sending a message encrypted with $k = g^{xy}$

B finds A’s public key g^x

message to A is encrypted with g^{xy} (where y is B’s private key)

A can decrypt the message by looking up B’s public key g^x and computing g^{xy} with their private key

Diffie and Hellman’s method led to the idea of public key cryptography

each user maintains two keys, a public key and a private key

Anyone can send A (who has public key g^x) a secure message by picking a random y and sending a message encrypted with $k = g^{xy}$

B finds A’s public key g^x

message to A is encrypted with g^{xy} (where y is B’s private key)

A can decrypt the message by looking up B’s public key g^x and computing g^{xy} with their private key

For large p an eavesdropper that learns g^x can’t tell how many times the wheel moved, even if they know p and g

the value g^x appears to be random

Public Key Cryptography
RSA

- The RSA method is the most widely used form of public key cryptography
- D-H is a key-exchange protocol
- messages are encrypted as block ciphers using the agreed upon key
- a sender using RSA encrypts the message using public keys
- To create keys:
 - choose two large prime numbers \(p \) and \(q \)
 - define \(n = p \times q \)
 - use fundamental relationships of number theory to compute a value \(t \) that has the property that \(x^t \equiv 1 \mod n \) for any \(1 < x < p \)
 - find two numbers \(d \) and \(e \) such that \(d \times e = 1 \mod t \)
 - \(e \) is the public key, used for encryption
 - \(d \) is the private key, used for decryption
- If you want the gory details see Ferguson and Schneier and the Ruby program I wrote for this week's lab project (rsa.rb)

Example

```ruby
>> load "rsa.rb"
=> true
>> RSA.generateKey
=> nil
>> RSA.printKeys
public:  e = 5, n = 6992085500459301127
private: d = 2097625648551006353, n = 6992085500459301127
primes:  p = 2689752083, q = 2599527869
>> m = "Et tu?"
=> "Et tu?"
>> c = RSA.encrypt(m)
=> 4305488901586534643
>> RSA.decrypt(c)
=> "Et tu?"
```

Notes

- The prime numbers generated by rsa.rb are 32 bits long
 - this is just a demo program
 - in real applications the suggestion is to use 2000-bit primes
- For rsa.rb \(n \) (the product of the two primes) is 64 bits
 - for real applications it will be 4000 bits
- Since encryption computes a number mod \(n \), the number of bits in the message has to be less than the number of bits in \(n \)
 - for our demo: 8 characters (since it uses ASCII)
- What would happen if you tried to encrypt a longer message?
- In Friday's lecture we'll talk more about practical applications of RSA