Jumping ahead

- Now we’re on to chapters 11 and 12.
- Chapter 11: Time and Global States
- Chapter 12: Coordination and Agreement
Time

- Time plays an important role in distributed systems.
 - Maintaining consistency of distributed data.
 - E.g.: Timestamps to serialize transactions.
 - Authentication protocols.
 - Elimination of duplicate updates.

- Typically we are concerned with the order of operations that occur on different nodes relative to each other.
 - How do we do this if there is no shared, universal clock that all nodes can refer to?
 - Even worse, how do we synchronize with each other if messaging times and clock behaviors are variable?
The relative ordering of events is intimately tied to the observer and what is being observed.

For example, we have two event producers A and B, and two event consumers, X and Y and a fixed speed of light.

Assume as an outside-of-the-universe observer, we can determine for certain that A and B produce their events at the same time.

To X, equidistant from both, they appear simultaneous. To Y, they see B happen before A.
Relativity

- So, because the speed at which information can propagate has a fixed, finite upper bound, two different observers can come to two different conclusions about the same sequence of events.

- How does this impact distributed systems?
 - Ability to know order of two events on different nodes.
 - Ability to know if two distributed events occurred simultaneously.
 - This is an issue with fast-paced games.
Clocks

- Let t be “real time”.
- A clock is a physical device attached to a computer that oscillates at a certain frequency counting these oscillations.
- Let \(H_i(t) \) be the clock value on node i at time t.
 - This could be a cycle counter, tick counter.
- The software clock translates this into an approximation of real time:
 \[
 C_i(t) = \alpha H_i(t) + \beta
 \]
 - Scale and offset.
- The clock resolution is the amount of real time that elapses between two adjacent clock ticks.
 - Successive events are guaranteed to get a unique time if they occur at times further apart than a single clock tick.
Clocks: Drift and Skew

- Skew: The instantaneous difference between two clocks.
- Drift: Two clocks that count at different rates will have a growing skew. They drift relative to each other.
 - Imprecision in clock manufacturing can cause this.
 - Changes in the environment can affect oscillation times (e.g.: temperature fluctuations).
 - Relativistic effects. Time dilation occurs in the presence of a gravitational field.
 - GPS requires this sort of correction because the GPS satellites are in a different part of the Earth’s gravitational field than receivers.
- Quartz crystals are common oscillators in computers and other devices. They have a drift rate of 10^{-6} seconds per day. That’s one second for every 1,000,000 seconds, or 11.6 days.
Synchronization

- There are two types of time synchronization.
 - **External**: Synchronization with an external authority that is connected directly to an external time source, such as an atomic clock or radio receiver.
 - **Internal**: Synchronization of a set of clocks with each other to some known accuracy. Allows us to observe event intervals amongst the set of participants, but not outsiders or real time.
External synchronization

- Given some synchronization bound \(D > 0 \) and a source \(S \) of UTC.
- Condition: For all participants \(i = 1 \ldots n \) and all real times \(t \) over some interval:
 \[
 \left| S(t) - C_i(t) \right| < D
 \]
- If this condition holds, then we can say that the clocks \(C_i(t) \) are accurate to within the bound \(D \).
Internal synchronization

- Given some synchronization bound $D > 0$ and a set of N interacting nodes.
- Condition: For all nodes i and j:

$$|C_i(t) - C_j(t)| < D$$

 - for all real times t over some interval.
 - If this condition holds, then we can say that the clocks C_i agree within a bound D.
Internal vs. external synchronization

- Internal synchronization does not imply external synchronization because of inherent drift from the external source.
- On the other hand, if all N nodes are synchronized with bounds D to the source S, then all N nodes are internally synchronized with bound 2D.
 - Why 2D? Each node is within D of the source S. A node can be +D or −D. So, in the extreme case one node is +D and the other is −D. That is 2D apart.
Drift rates and intervals

- Given a bounded drift rate ρ, we can say that the error in measuring the interval between real times t and t' ($t' > t$) is bounded by:

$$
(1 - \rho)(t' - t) \leq H(t') - H(t) \leq (1 + \rho)(t' - t)
$$

- This forbids large jumps in the clock under normal operating conditions (where the drift rate bound holds).
Monotonicity

- $t' > t$ implies $C(t') > C(t)$
 - I would make this weaker, where $t' > t$ implies $C(t') \geq C(t)$ if $t'-t$ is less than the clock resolution.

- Monotonicity simply states that given two points in real time, the order relationship between them will be preserved by the software clock.
 - Interestingly, monotonicity can be violated when a clock ‘flips over’ as the finite representation of the clock overflows.
 - Fortunately, this is rare, and we can detect it.