MIDTERM SAMPLE SOLUTION

1. Provide solutions (using big-Oh or big-Theta) for the following recurrence relations.
 (a) $T(n) = 7 \cdot T(\frac{n}{3}) + n \lg n$
 (b) $T(n) = 314 \cdot T(\frac{n}{313}) + 2^{315} \cdot n$
 (c) $T(n) = 25 \cdot T(\frac{n}{5}) + n^2$

 {sol'n} The answers are $\Theta(n^{\log_7 7})$, $\Theta(n^{\log_{313} 314})$, and $\Theta(n^2 \lg n)$, respectively.

2. Into an initially empty AVL tree, insert the following values:
 62, 47, 32, 15, 26, 30, 27, 28, 29, 10, 5.

 {sol'n} See the attached graphics below.

3. Insert the values above into an initially empty 2-3-4 tree.
 {sol'n} See the attached graphics below.

4. What are the run-times of the following pieces of code?

 (a) for $i = n$ downto 1 {
 j = i
 while (j>=1) {
 sum++
 j=j/313
 }
 }

 (b) for $i = 1$ to n^3
 for $j = 1$ to $i \cdot n$
 sum++

 {sol'n} The first piece of code is $\Theta(n \lg n)$ - note that the inner loop runs for $\log_{313} i = \Theta(\lg i)$ steps.

 In part (b), the maximum value of i is n^3, and so the inner loop runs for at most n^4 steps. With the outer loop running n^3 times, the maximum total is $O(n^3 \cdot n^4) = O(n^7)$.

 A more accurate accounting would be
 \[
 \sum_{i=1}^{n^3} i \cdot n = n \cdot \sum_{i=1}^{n^3} i = n \cdot \frac{n^3(n^3 - 1)}{2} = \frac{n^7 - n^4}{2} = \Theta(n^7).
 \]
5. Write a recursive routine which, given an integer \(k \), prints the keys of all nodes at height \(k \). They can be printed in any order. The fields of each node are called key, lchild, and rchild.

\{sol’n\} This is similar to the balance factor problem of HW3 - in this case rather than calculating the balance factor, we compare our height to \(k \). The initial call should be `getHeights(T.root, k)`.

```
procedure getHeights(node p, int k) returns int

    if (p==null) return -1

    lHeight = getHeights(p.lchild, k)
    rHeight = getHeights(p.rchild, k)
    thisHeight = max(lHeight, rHeight) + 1

    if (thisHeight==k)
        print p.key

    return thisHeight
```

The idea is to calculate the height of each node - get the heights of the left and right children, add one to the maximum of those two values. At this point, we compare our height to \(k \), and print the key if equal. We will necessarily be doing a postorder traversal since we can’t know the height of the current node before we know the heights of the children.
Question 2: build AVL tree

After the insertion of 26:

![AVL tree diagram](attachment:avl_tree_26.png)

After 30:

![AVL tree diagram](attachment:avl_tree_30.png)

After 29:

![AVL tree diagram](attachment:avl_tree_29.png)
After 10

And the final tree
Question 3: *build 2-3-4 tree*

The final tree, using the bottom-up technique described in class, is