Constraints in Graph Drawing

Roberto Tamassia
Brown University
Advances in the Theory and Practice of Graph Drawing

Roberto Tamassia
Brown University
Introduction
Graph Drawing

- models, algorithms, and systems for the visualization of graphs and networks

- applications to software engineering (class hierarchies), database systems (ER-diagrams), project management (PERT diagrams), knowledge representation (isa hierarchies), telecommunications (ring covers), WWW (browsing history) ...
Drawing Conventions

- *general constraints* on the geometric representation of vertices and edges

polyline drawing

planar straight-line drawing

orthogonal drawing
Drawing Conventions

planar orthogonal straight-line drawing

![Graph RDrawing](image)

strong visibility representation

![Graph RDrawing](image)
Drawing Conventions

- directed acyclic graphs are usually drawn in such a way that all edges “flow” in the same direction, e.g., from left to right, or from bottom to top
- such *upward drawings* effectively visualize hierarchical relationships, such as covering digraphs of ordered sets
- not every planar acyclic digraph admits a planar upward drawing
Resolution

- display devices and the human eye have finite resolution
- examples of *resolution rules*:
 - integer coordinates for vertices and bends (*grid* drawings)
 - prescribed minimum distance between vertices
 - prescribed minimum distance between vertices and nonincident edges
 - prescribed minimum angle formed by consecutive incident edges (*angular resolution*)
Angular Resolution

- The *angular resolution* ρ of a straight-line drawing is the smallest angle formed by two edges incident on the same vertex.

- *High angular resolution* is desirable in *visualization* applications and in the design of *optical communication* networks.

- A *trivial upper bound* on the angular resolution is

$$\rho \leq \frac{2\pi}{d}$$

where d is the maximum vertex degree.
Aesthetic Criteria

■ some drawings are better than others in conveying information on the graph
■ *aesthetic criteria* attempt to characterize readability by means of general *optimization* goals

Examples

■ minimize *crossings*
■ minimize *area*
■ minimize *bends* (in orthogonal drawings)
■ minimize *slopes* (in polyline drawings)
■ maximize *smallest angle*
■ maximize display of *symmetries*
Trade-Offs

■ in general, one cannot simultaneously optimize two aesthetic criteria

![Graph drawing example showing trade-offs between crossing minimization and symmetry maximization.](image)

Complexity Issues

■ testing planarity takes linear time
■ testing upward planarity is NP-hard
■ minimizing crossings is NP-hard
■ minimizing bends in planar orthogonal drawing:
 ■ NP-hard in general
 ■ polynomial time for a fixed embedding
Beyond Aesthetic Criteria
Constraints

- some readability aspects require knowledge about the *semantics* of the specific graph (e.g., place “most important” vertex in the middle)
- *constraints* are provided as additional input to a graph drawing algorithm

Examples

- place a given vertex in the “middle” of the drawing
- place a given vertex on the external boundary of the drawing
- draw a subgraph with a prescribed “shape”
- keep a group of vertices “close” together
Algorithmic Approach

- Layout of the graph generated according to a *prespecified* set of *aesthetic criteria*
- Aesthetic criteria embodied in an *algorithm* as *optimization goals*. E.g.
 - minimization of crossings
 - minimization of area

Advantages

- Computational *efficiency*

Disadvantages

- User-defined *constraints* are not naturally supported

Extensions

- A limited constraint-satisfaction capability is attainable within the algorithmic approach
 E.g., [Tamassia Di Battista Batini 87]
Declarative Approach

- Layout of the graph specified by a *user-defined* set of *constraints*
- Layout generated by the *solution* of a *system* of constraints

Advantages

- *Expressive power*

Disadvantages

- Some natural aesthetics (e.g., planarity) need *complicated* constraints to be expressed
- General constraint-solving systems are computationally *inefficient*
- Lack of a powerful language for the specification of constraints (currently done with a detailed enumeration of facts, or with a set notation)
Getting Started with Graph Drawing

- Roberto Tamassia’s WWW page
 http://www.cs.brown.edu/people/rt/

- Tutorial on Graph Drawing by Isabel Cruz and Roberto Tamassia (about 100 transparencies)

- Annotated Bibliography on Graph Drawing (more than 300 entries, up to 1993) by Di Battista, Eades, Tamassia, and Tollis.

- Computational geometry bibliography
 ftp://cs.usask.ca/pub/geometry/ (about 8,000 BibTeX entries, including most papers on graph drawing, updated quarterly)

- Proceedings of the Graph Drawing Symposium (Springer-Verlag, LNCS)

- Graph Drawing Chapters in:
 CRC Handbook of Discrete and Computational Geometry
 Elsevier *Manual of Computational Geometry*
Trees
Drawings of Rooted Trees

- the usual drawings of rooted trees are \textit{planar, straight-line}, and \textit{upward} (parents above children)
- it is desirable to minimize the \textit{area} and to display \textit{symmetries} and \textit{isomorphic subtrees}
- \textit{level drawing}: nodes at the same distance from the root are horizontally aligned

- level drawings may require $\Omega(n^2)$ \textit{area}
A Simple Level Drawing Algorithm for Binary Trees

- $y(v) = \text{distance from root}$
- $x(v) = \text{inorder rank}$

- level grid drawing
- display of symmetries and of isomorphic subtrees
- parent in between left and right child
- parents not always centered on children
- width = $n - 1$
A Recursive Level Drawing Algorithm for Binary Trees

[Reingold Tilford 1983]

- draw the left subtree
- draw the right subtree
- place the drawings of the subtrees at horizontal distance 2
- place the root one level above and half-way between the children
- if there is only one child, place the root at horizontal distance 1 from the child
Properties of Recursive Level Drawing Algorithm for Binary Trees

- *centered* level drawing
- “small” width
- display of symmetries and of isomorphic subtrees
- can be implemented to run in $O(n)$ time
- can be extended to draw general rooted trees (e.g., root is placed at the average x-coordinate of its children)
Non Optimality of Recursive Tree Drawing Algorithm

drawing constructed by the algorithm

minimum width drawing

- minimizing the width is NP-hard if integer coordinates are required
Area-Efficient Drawings of Trees

- planar straight-line orthogonal upward grid drawing of a binary tree with $O(n \log n)$ area, $O(n)$ width, and $O(\log n)$ height
 [Crescenzi Di Battista Piperno 92]
 [Shiloach 76]

- draw the largest subtree “to the right” and the smallest subtree “below”

Example:
Area-Efficient Drawings of Trees

- planar straight-line upward grid drawings of *AVL trees* with *$O(n)$ area*
 [Crescenzi Di Battista Piperno 92]
 [Crescenzi Penna Piperno 95]
Area-Efficient Drawings of Trees

- planar polyline upward grid drawings with $O(n)$ area
 [Garg Goodrich Tamassia 93]
Area Requirement of Planar Drawings of Trees

<table>
<thead>
<tr>
<th></th>
<th>(\Theta(n^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>upward level</td>
<td>[RT 83]</td>
</tr>
<tr>
<td>upward polyline</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>[GGT 93]</td>
<td></td>
</tr>
<tr>
<td>\textit{upward}</td>
<td>(\Omega(n)) O(n \log n)</td>
</tr>
<tr>
<td>\textit{straight-line}</td>
<td>[CDP 92]</td>
</tr>
<tr>
<td>upward orthogonal</td>
<td>(\Theta(n \log \log n))</td>
</tr>
<tr>
<td>[GGT 93]</td>
<td></td>
</tr>
<tr>
<td>non-upward orthogonal</td>
<td>(\Theta(n))</td>
</tr>
<tr>
<td>[L80, V91]</td>
<td></td>
</tr>
<tr>
<td>non-upward leaves-on-hull orthogonal</td>
<td>(\Theta(n \log n))</td>
</tr>
<tr>
<td>[BK 80]</td>
<td></td>
</tr>
</tbody>
</table>

- **Open Problem**: determine the area requirement of planar upward straight-line drawings of trees
Size of Planar Drawings of Binary Trees

- the size of a drawing is the maximum of its **height** and **width**
- known bounds on the size of **planar** drawings of binary trees:

<table>
<thead>
<tr>
<th>Type</th>
<th>Bound</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>upward, straight-line level</td>
<td>(O(n))</td>
<td>[RT 83]</td>
</tr>
<tr>
<td>upward, polyline</td>
<td>(\Theta(n^{1/2}))</td>
<td>[GGT93]</td>
</tr>
<tr>
<td>upward, straight-line</td>
<td>(\Theta(n^{1/2}))</td>
<td>[CGKT96]</td>
</tr>
<tr>
<td>orthogonal, AVL trees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>upward, straight-line</td>
<td>(\Theta((n \log n)^{1/2}))</td>
<td>[CGKT96]</td>
</tr>
<tr>
<td>orthogonal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Open Problem**: can \(\Theta(n^{1/2}) \) size be achieved for (nonupward) planar straight-line drawings of binary trees?
Planar Upward Straight-Line Drawings of Binary Trees with Optimal Size

- *recursive winding* technique [CGKT96]:
 - let \(N \) be number of nodes in the tree, and \(N(v) \) be the number of nodes in the subtree rooted at \(v \)
 - for each node \(u \), swap children to have \(N(\text{left}(u)) \leq N(\text{right}(u)) \)
 - find the first node \(v \) on the rightmost path such that:
 \[
 N(\text{right}(v)) \leq N - (N \log N)^{1/2} < N(v)
 \]
 - draw the left subtrees on the path from the root to \(v \) with linear width (height) and logarithmic height (width)
 - draw recursively the subtrees \(T' \) and \(T'' \) of \(v \)
Recurrence relations for the width $W(N)$ and height $H(N)$:

- $W(N) \max \{W(N'), W(N''), A\} + O(\log N)$
- $H(N) \max \{H(N') + H(N'') + O(\log N), A\}$

where:

- $A = (N \log N)^{1/2}$
- $\max(N', N'') \leq N - A$

Solution:

- $W(N) = H(N) = O(N \log N)^{1/2}$
Tip-Over Drawings of Rooted Trees

- Tip-over drawings are upward planar orthogonal drawings such that the children of a node:
 - are arranged either horizontally or vertically
 - share portions of the edges to the parent.

- Widely used in organization charts.
- Allow to better fit the drawing in a prescribed region.
Inclusion Drawings of Rooted Trees

- *Inclusion drawings* display the parent-child relationship by the inclusion between isothetic rectangles.

![Diagram](image)

- Closely related to tip-over drawings.
- Used for displaying compound graphs (e.g., the union of a graph and a tree)
- Allow to better fit the drawing in a prescribed region
Area of Tip-Over and Inclusion Drawings

- Eades, Lin and Lin (1992) study of the area requirement of tip-over and inclusion drawings of rooted trees.
- The dimensions of the node labels are given as part of the input.
- **Minimizing the area** of the drawing is:
 - *NP-hard for general trees*
 - computable in *polynomial time* for *balanced trees* with a *dynamic programming* algorithm

- Similar results for the following problems:
 - minimizing the *perimeter* of the drawing.
 - minimizing the *width* for a given height
 - minimizing the *height* for a given width
How to Draw Free Trees

- *Free trees* are connected graphs without cycles and do not represent hierarchical relationships (e.g., spanning trees)
- Level drawings of rooted trees yield *radial drawings* of free trees:
 - root the free tree T at its *center* (node with minmax distance from the leaves), which gives a rooted tree T'
 - construct a level drawing Δ' of T'
 - use a geometric transformation (*cartesian* \rightarrow *polar*) to obtain from Δ' a radial drawing Δ of T
Planar Undirected Graphs
Planar Drawings and Embeddings

- a planar embedding is a class of topologically equivalent planar drawings

- a planar embedding prescribes
 - the \textit{star} of edges around each vertex
 - the \textit{circuit} bounding each face

- the number of distinct embeddings is exponential in the worst case
- triconnected planar graphs have a unique embedding
The Complexity of Planarity Testing

- Planarity testing and constructing a planar embedding can be done in *linear time*:
 - *depth-first-search*
 [Hopcroft Tarjan 74]
 [de Fraysseix Rosenstiehl 82]
 - *st-numbering and PQ-trees*
 [Lempel Even Cederbaum 67]
 [Even Tarjan 76]
 [Booth Lueker 76]
 [Chiba Nishizeki Ozawa 85]

- The above methods are *complicated* to understand and implement

- **Open Problem:**
 - devise a *simple* and *efficient* planarity testing algorithm.
Planar Straight-Line Drawings

- [Hopcroft Tarjan 74]: planarity testing and constructing a planar embedding can be done in $O(n)$ time
- [Fary 48, Stein 51, Steinitz 34, Wagner 36]: every planar graph admits a planar straight-line drawing

Planar straight-line drawings may need $\Omega(n^2)$ area

- [de Fraysseix Pach Pollack 88, Schnyder 89, Kant 92]: $O(n^2)$-area planar straight-line grid drawings can be constructed in $O(n)$ time
Planar Straight-Line Drawings: Angular Resolution

- $O(n^2)$-area drawings may have $\rho = O(1/n^2)$

- [Garg Tamassia 94]:
 - *Upper bound* on the angular resolution:
 \[
 \rho = O\left(\sqrt{\frac{\log d}{d^3}}\right)
 \]
 - *Trade-off* (area vs. angular resolution):
 \[
 A = \Omega(c^{\rho n})
 \]
- [Kant 92] Computing the optimal angular resolution is *NP-hard.*
Planar Straight-Line Drawings: Angular Resolution

- [Malitz Papakostas 92]: the angular resolution depends on the degree only:
 \[
 \rho = \Omega\left(\frac{1}{7d}\right)
 \]

- Good angular resolution can be achieved for special classes of planar graphs:
 - outerplanar graphs, \(\rho = O(1/d) \) [Malitz Papakostas 92]
 - series-parallel graphs, \(\rho = O(1/d^2) \) [Garg Tamassia 94]
 - nested-star graphs, \(\rho = O(1/d^2) \) [Garg Tamassia 94]

- **Open Problems:**
 - Can we achieve \(\rho = O(1/d^k) \) (\(k \) a small constant) for all planar graphs?
 - Can we efficiently compute an approximation of the optimal angular resolution?
Planar Orthogonal Drawings: Minimization of Bends

- given planar graph of degree ≤ 4, we want to find a planar orthogonal drawing of G with the minimum number of bends
Minimization of Bends in Planar Orthogonal Drawings

- [Tamassia 87]
 - $O(n^2 \log n)$-time bend minimization for fixed embedding

- [Di Battista Liotta Vargiu 93]
 - Polynomial-time bend minimization for degree-3 and series-parallel graphs

- [Tamassia Tollis 89]
 - $O(n)$-time approximation with $O(n)$ bends

- [Garg Tamassia 93]
 - Minimization of bends is NP-hard
 - Approximation with $O(opt + n^{1-\varepsilon})$ bends is NP-hard
 - Rectilinear planarity testing is NP-complete
Network Flow Model

- a unit of flow is a 90° angle
- a vertex (source) produces 4 units

- a face f (sink) consumes 2 \(\text{deg}(f) - 4\) units (\(\text{deg}(f) + 4\) for the external face)

- Edges transport flow across faces
Flow Network

- vertex-face arcs: flow ≥ 1, cost = 0
Flow Network

- face-face arcs: flow ≥ 0, cost = 1
Complete Flow Network

Graph Drawing

44
Correctness of Flow Model

- supply of sources = demand of sinks ⇔ Euler’s formula
- flow conservation at vertex ⇔ \(\sum \) angles around vertex = 360°
- flow conservation at face ⇔ (# 90° angles) – (# 270° angles) = 4
- cost of flow ⇔ # bends
- flow in N ⇔ drawing of G
- minimum cost flow ⇔ optimal drawing

Theorem [Tamassia 87] Computing the minimum number of bends for an embedded graph G is equivalent to computing a minimum cost flow in network N, and takes \(O(n^2 \log n) \) time

Open Problem: reduce the time complexity of bend minimization.
Constrained Bend Minimization

- the network flow model allows us to minimize bends subject to *shape constraints*
 - prescribed angles around a vertex
 - prescribed bends along an edge
 - upper bound on the number of bends on an edge
- the above *shape constraints* on the drawing can be expressed by setting appropriate *capacity constraints* on the edges of the network
- E.g., we can prescribe a maximum of 2 bends on a given edge e by setting equal to 2 the capacity of the *face-face arcs* associated with e

![Diagram of a graph with constrained bends]
Characterization of Bend-Minimal Drawings

- A drawing has the minimum number of bends if and only if there is no oriented closed curve C such that
 - vertices are intersected by C entering from angles ≥ 180°
 - (# edges crossed by C from 90° or 180°) < (# edges crossed by C from 270°)
- If such a curve exists, “rotating” the portion of the drawing inside C reduces the number of bends
Proving the Optimality of a Drawing

- potential Φ on each face

- vertices cannot be traversed by C
- C traverses edge from $270^\circ \Rightarrow \Delta \Phi_i = -1$
- C traverses edge from $90^\circ \Rightarrow \Delta \Phi_i = +1$
- bends removed going “inward” and inserted going “outward” $\Delta B_i + \Delta \Phi_i = 0$
- C is a closed curve $\Rightarrow \Sigma_i \Delta \Phi_i = 0$
- Hence, $\Sigma_i \Delta B_i = 0$
Visibility Representation

n vertices \rightarrow horizontal segments
n edges \rightarrow vertical segments
n can be constructed in $O(n)$ time
n preliminary step for drawing algorithms
From Visibility Representations to Orthogonal Drawings
Heuristic Algorithm for Bend Minimization

1. Construct visibility representation
2. Transform visibility representation into a preliminary drawing
3. Apply bend-stretching transformations
4. Compact orthogonal representation

Runs in $O(n)$ time and can be parallelized

At most $2n + 4$ bends if G is biconnected
(2.4n + 2 otherwise)

$O(n^2)$ area
Planar Directed Graphs
Upward Planarity Testing

- upward planarity testing for ordered sets has the same complexity as for general digraphs (insert dummy vertices on transitive edges)

- [Kelly 87, Di Battista Tamassia 87]: upward planarity is equivalent to subgraph inclusion in a planar st-digraph (planar acyclic digraph with one source and one sink, both on the external face)

- [Kelly 87, Di Battista Tamassia 87]: upward planarity is equivalent to upward straight-line planarity
Complexity of Upward Planarity Testing

- [Bertolazzi Di Battista Liotta Mannino 91]
 - \(O(n^2)\)-time for fixed embedding
- [Hutton Lubiw 91]
 - \(O(n^2)\)-time for single-source digraphs
- [Bertolazzi Di Battista Mannino Tamassia 93]
 - \(O(n)\)-time for single-source digraphs
- [Garg Tamassia 93]
 - NP-complete
How to Construct Upward Planar Drawings

- Since an upward planar digraph is a subgraph of a **planar st-digraph**, we only need to know how to draw planar st-digraphs.

- If G is a planar st-digraph without transitive edges, we can use the *left/right* numbering method to obtain a **dominance drawing**:
Properties of Dominance Drawings

- *Upward, planar, straight-line, $O(n^2)$ area*
- The *transitive closure* is visualized by the geometric dominance relation

- *Symmetries* and *isomorphisms* of *st-components* are displayed
More on Dominance Drawings

■ A variation of the left/right numbering yields dominance drawings with *optimal area*

■ Dummy vertices are inserted on transitive edges and are displayed as bends (upward planar polyline drawings)
Planar Drawings of Graphs and Digraphs

- We can use the techniques for dominance drawings also for undirected planar graphs:
 - orient G into a planar st-digraph G'
 - construct a dominance drawing of G'
 - erase arrows ...

General Undirected Graphs
Algorithmic Strategies for Drawing General Undirected Graphs

- **Planarization method**
 - if the graph is nonplanar, *make it planar*! (by placing dummy vertices at the crossings)
 - use one of the drawing algorithms for planar graphs
 e.g., Giotto [Tamassia Batini Di Battista 87]

- **Orientation method**
 - *orient* the graph into a digraph
 - use one of the drawing algorithms for digraphs

- **Force-Directed method**
 - define a *system of forces* acting on the vertices and edges
 - find a *minimum energy state* (solve differential equations or simulate the evolution of the system)
 e.g., Spring Embedder [Eades 84]
A Simple Planarization Method

use an *on-line planarity testing* algorithm

1. try adding the edges one at a time, and divide them into “*planar*” (accepted) and “*nonplanar*” (rejected)

2. construct a planar embedding of the subgraph of the planar edges

3. add the nonplanar edges, one at a time, to the embedding, minimizing each time the number of *crossings* (shortest path in *dual graph*)
Topological Constraints in the Planarization Method

- a limited constraint satisfaction capability exists within the planarization methods
- **Example:** draw the graph such that the edges in a given set \(A \) have *no crossings*
 - in Step 1, try adding first the edges in \(A \)
 - in Step 3, put a large “crossing cost” on the planar edges in \(A \), and add first the nonplanar edges in \(A \) (if any)
- **Example:** draw the graph such the vertices of subset \(U \) are on the *external boundary*
 - add a *fictitious vertex* \(v \) and edges from \(v \) to all the vertices in \(U \)
 - let \(A \) be the set of edges \((u,v)\), with \(u \) in \(U \)
 - impose the above constraint
GIOTTO
[Tamassia Di Battista Batini 88]

- time complexity: $O((N+C)^2 \log N)$
Example
Constraint Satisfaction in GIOTTO

- **topological constraints**
 - vertices on external face
 - edges without crossings
 - grouping of vertices
- **shape constraints**
 - subgraphs with prescribed orthogonal shape
 - edges without bends
- Topological constraints have *priority* over shape constraints because the algorithm assigns first the topology and then the orthogonal shape
- grouping is only topological
- no position constraints
- no length constraints
Advantages and Disadvantages of Planarization Techniques

Pro:

- *fast* running time
- *applicable* to straight-line, orthogonal and polyline drawings
- supported by *theoretical results* on planar drawings
- *works well* in practice, *also for large graphs*
- limited *constraint satisfaction* capability

Con:

- relatively *complex* to implement
- *topological transformations* may alter the user’s mental map
- *difficult to extend to 3D*
- *limited constraint satisfaction* capability
The Spring Embedder
[Eades 1984]

- replace the edges by \textit{springs} with unit natural length
- connect nonadjacent vertices with additional springs with infinite natural length
- recall that the springs attract the endpoints when stretched, and repel the endpoints when compressed

- start with an initial random placement of the vertices
- let the system go ... (assume there is \textit{friction} so that a stable minimum energy state is eventually reached)
Other Force-Directed Techniques

- [Kamada Kawai 89]
 - the forces try to place vertices so that their geometric distance in the drawing is equal to their graph-theoretic distance
 - for each pair of vertices (u,v) use a spring with natural length dist(u,v)

- [Fruchterman Reingold 90]
 - system of forces similar to that of subatomic particles and celestial bodies
 - given drawing region acts as wall
 - n-body simulation

- [Davidson Harel 89]
 - energy function takes into account vertex distribution, edge-lengths, and edge-crossings
 - given drawing region acts as wall
 - simulated annealing
Advantages and Disadvantages of Force-Directed Techniques

Pro:
- relatively \textit{simple} to implement
- \textit{heuristic improvements} easily added
- \textit{smooth evolution} of the drawing into the final configuration helps preserving the user’s mental map
- \textit{can be extended to 3D}
- often able to detect and display \textit{symmetries}
- \textit{works well} in practice \textit{for small graphs} with regular structure
- limited \textit{constraint satisfaction} capability

Con:
- \textit{slow} running time
- \textit{few theoretical results} on the quality of the drawings produced
- \textit{difficult to extend} to orthogonal and polyline drawings
- \textit{limited constraint satisfaction} capability
Constraints in Force-Directed Techniques

- *position constraints* can be easily imposed
 - we can constrain each vertex to remain in a prescribed region
- other *constraints* can be satisfied provided they can be *expressed by means of forces*, e.g,
 - “*magnetic field*” to impose orientation constraints [Sugiyama Misue 84]
- dummy “*attractor*” vertex to enforce grouping
Springs for Planar Graphs

- use springs with natural length 0, and attractive force proportional to the length
- pin down the vertices of the *external face* to form a given *convex polygon* (position constraints)
- let the system go ...

- the final configuration is a state of minimum energy: \(\min \sum_e [\text{length}(e)]^2 \)
- equivalent to the *barycentric mapping* [Tutte 60]:

\[
p(v) = \frac{1}{\deg(v)} \sum_{(v,w)} p(w)
\]
General Directed Graphs
Layering Method for Drawing General Directed Graphs

- **Layer assignment:** assign vertices to layers trying to minimize
 - *edge dilation*
 - *feedback edges*
- **Placement:** arrange vertices on each layer trying to minimize
 - *crossings*
- **Routing:** route edges trying to minimize
 - *bends*
- **Fine tuning:** improve the drawing with local modifications

[Carpano 80]
[Sugiyama Tagawa Toda 81]
[Rowe Messinger et al. 87]
[Gansner North 88]
Declarative Approaches
Layout Graph Grammars
[Brandenburg 94] [Hickl 94]

■ grammatical (rule-based method) for drawing graphs
■ extension of a context-free string grammar
 ■ underlying context-free graph grammar
 ■ layout specification for its productions
■ by repeated applications of its productions, a graph grammar generates labeled graphs, which define its graph language
■ class of layout graph grammars for which optimal graph drawings can be constructed in polynomial time:
 ■ H-tree layouts of complete binary trees
 ■ hv-drawings of binary trees
 ■ series-parallel graphs
 ■ NFA state transition diagrams from regular expressions
COOL
[Kamada 89]

- framework for visualizing abstract objects and relations.
- constraint-based object layout system
 - *rigid* constraints
 - *pliable* constraints
 - conflicting constraints can be solved approximately

original textual representation
\[\text{Analyzer}\]
relational structure representation
\[\text{Visual Mapping}\]
visual structure representation
\[\text{COOL} \quad \boxed{- - - - layout library}\]
target pictorial representation
ANDD
[Marks et al]

- layout-aesthetic concerns subordinated to perceptual-organizational concerns
- notation for describing the visual organization of a network diagram
 - alignment, zoning, symmetry, T-shape, hub shape
- layout task as a constrained optimization problem:
 - constraints derived from a visual-organization specification
 - optimality criteria derived from layout-aesthetic considerations
- two heuristic algorithms:
 - rule-based strategy
 - massive parallel genetic algorithm
Visual Graph Drawing
[Cruz, Tamassia Van Hentenryck 93]

- A **visual** approach to graph drawing can reconcile expressiveness with efficiency
- Goals
 - **Visual** specification of layout **constraints**: the user should not have to type a long list of textual specifications
 - **Visual** specification of aesthetic criteria associated with optimization problems
 - **Extensibility**: the user should not be limited to a prespecified set of visual representations.
 - **Flexibility**: the user should not have to give precise geometric specifications.
Efficient Visual Graph Drawing
[Cruz Garg 94] [Cruz Garg Tamassia 95]

- graph stored in an object-oriented database
- drawing defined “by picture” using recursive visual rules of the language DOODLE [Cruz 92]
- a set of constraints is generated by the application of the visual rules to the input graph
- various types of drawings can be visually expressed in such a way that the resulting set of constraints can be solved in linear time, e.g.,
 - drawings of trees (upward drawings, box inclusion drawings)
 - drawings of series-parallel digraphs (delta drawings)
 - drawings of planar acyclic digraphs (visibility drawings, upward planar polyline drawings)
T: binTree [root \rightarrow N: node; left \rightarrow L: binTree; right \rightarrow R: binTree]
Drawings of Planar DAGs

- planar upward drawing

- visibility drawing

- tessellation drawing
Tessellation Drawing

F-Language

\[\text{v: sourceVertex [leftFace } \rightarrow \text{ f: face ; rightFace } \rightarrow \text{ g: face]} \]

F-Language

\[\text{v: vertex [leftFace } \rightarrow \text{ f: face ; rightFace } \rightarrow \text{ g: face} \]

F-Language

\[\text{f: face [} \alpha \rightarrow \text{ v_2: vertex ; bottomVertex } \rightarrow \text{ v_1: vertex]} \]
Tessellation Drawing

F-Language

\[e: \text{edge} [\text{from} \rightarrow v_1 : \text{vertex}; \text{to} \rightarrow v_2 : \text{vertex}; \left\text{leftFace} \rightarrow f: \text{face}; \right\text{rightFace} \rightarrow g: \text{face}] \]
Visibility Drawing

VisibilityDrawing

v: sourceVertex

F-Language

v: sourceVertex [leftFace → f : face ;
rightFace → g: face]

VisibilityDrawing

v: vertex

F-Language

v: vertex [leftFace → f : face ;
rightFace → g: face]
Visibility Drawing

VisibilityDrawing

f: face

F

VisibilityDrawing

e: edge

e: edge [from \rightarrow v_1 : vertex;
to \rightarrow v_2 : vertex;
leftFace \rightarrow f: face;
rightFace \rightarrow g: face]
Upward Polyline Drawing

PolylineDrawing

v: sourceVertex

F-Language

v: sourceVertex [leftFace → f : face ;
rightFace → g: face]

PolylineDrawing

v: vertex

F-Language

v: vertex [leftFace → f : face ;
rightFace → g: face]
Upward Polyline Drawing

PolylineDrawing

F-Language

f: face

PolylineDrawing

F-Language

e: edge

1 [v]

PolylineDrawing

F-Language

e: edge [from → v₁ : vertex;
to → v₂ : vertex;
leftFace → f: face;
rightFace → g: face]

Graph Drawing
87
Systems
Some Graph Drawing Systems

- **GraphEd**
 (University of Passau, Germany)
 - ftp.uni-passau.de/pub/local/graphed/
 - M. Himsolt (himsolt@fmi.uni-passau.de)

- **DAG, DOT, NEATO**
 (AT&T Bell Labs)
 - research.att.com/dist/drawdag/
 - S. North (north@research.att.com)

- **Diagram Server**
 (University of Rome)
 - infokit.dis.uniroma1.it/public/
 - G. Di Battista
 (dibattista@iasi.rm.cnr.it)

- **Graph Layout Toolkit**
 (Tom Sawyer Software)
 - B. Madden (bmadden@tomsawyer.com)