Path Problems

solution is a sequence of operators transforming current into desired state

Problem Space

S: set of possible states

G: goal space subset of S representing desired situation

I: initial state element of S representing current situation

O: operators functions mapping O: S->S specified by sets of preconditions and effects
Water-jug Problem

Given three jugs with capacities A, B, and C
an unlimited source and sink for water
an empty vat with capacity 100
a GOAL amount of water to be in

find a sequence of
pour-ins and bail-outs of the jugs
realizing a GOAL amount in the vat.
such that no jug is used
more than three times.

Problem Space

S: <uses(A), uses(B), uses(C), amount>
0 <= uses(A), uses(B), uses(C) <= 3
0 <= amount <= 100

G: <?, ?, ?, GOAL>

I: <0, 0, 0, 0>

state represented as vector of attribute values
Water-jug Problem Space (continued)

O:
 pour-in(?jug):
 preconditions:
 uses(?jug)) < 3
 amount + capacity(?jug) <= 100
 effects:
 add 1 to uses(?jug)
 add capacity(?jug) to amount

 bail-out(?jug):
 preconditions:
 uses(?jug) < 3
 amount - capacity(?jug) >= 0
 effects:
 add 1 to uses(?jug)
 subtract capacity(?jug) from amount

amount in jug is part of state
General Search Method

(forward-directed: from I to G)

Given I, G, and O ;; S implicit

1. set \{Sobtained\} to \{I\};
 set Scurrent to I.

2. Until \[\text{Scurrent is in G or Scurrent is nil}\]
 select-operators \{Ocurrent\} from O,
 expand Scurrent, using
 \{Ocurrent\} to generate \{Snew\},
 update \{Sobtained\} according to \{Snew\},
 select Scurrent from \{Sobtained\};

3. If \[\text{Scurrent is nil}\]
 then report-failure
 else retrieve-solution
General Search Method

procedures

expand Scurrent:

 apply selected operators to Scurrent
to generate set of new states \{S_{new}\}

 for each operator o with satisfied preconditions,
 for each way the preconditions can be satisfied,
 generate new state s according to effects of o;
 add s to plan following Scurrent

search in space of "nodes"
 each node includes

 (i) state representation
 (ii) plan so far -or- pointer to prior node
 with prior state and operator applied
 (iii) other search control information
 (depth, cost so far, heuristic value)
General Search Method

procedures

update \{\text{Sobtained}\}:

options:

- simply add new elements, allowing duplicate states
- recognize and eliminate some or all duplicate states

maintain nodes as \{\text{Open}\} and \{\text{Closed}\} subsets

search strategies

- limit size of \{\text{Sobtained}\}, keeping only k best
 - $k = 1$ memoryless, $k > 1$ beam search

- treat as stack or queue
 - depth-first or breadth-first search

- order according to heuristic information

- hash or ancestor search to eliminate duplicates
General Search Method

procedures

select $S_{current}$:

- interacts with means of maintaining $\{S_{obtained}\}$
- only consider states in $\{Open\}$; once expanded, put on $\{Closed\}$
- take first state in an ordered $\{S_{obtained}\}$
Basic Search Strategies

uninformed search

breadth-first

depth-first

iterative deepening

compare

completeness

solution optimality

time complexity

space complexity
Basic Search Methods

breadth-first

- treat \{Sobtained\} as a queue
 - complete method
 - finds optimal depth solution

 - treat \{Sobtained\} as a priority queue
 - based on path cost (so far)
 - minimum cost solution
 - Dijkstra’s algorithm for shortest path in a graph

depth-first

- treat \{Sobtained\} as a stack
 - potentially incomplete method
 - potentially non-optimal solution
Basic Search Methods

complexity comparison

worst case

assuming depth \(d \) of solution
assuming branching factor of \(b \)

breadth-first search

time complexity \(O(b^d) \)
space complexity \(O(b^d) \)

always finds shallowest solution

depth-first search (with depth-limit at \(d \))

time complexity \(O(b^d) \)
space complexity \(O(bd) \)

wins on space measure,
with same order time complexity
when limit depth set to solution depth
Iterative Deepening

combine depth-first and breadth-first advantages

method:

search by depth-first method
to successive depths 1, 2, 3,
until find solution

analysis:

complete method
optimal depth solution

time complexity
d ratio of iterative deepening
to breadth-first is

~~ b/(b-1)

space complexity
d;b;;; linear in b and d
General Search Method

select Scurrent:

heuristic opportunity,
reflecting structure of state space

informed (heuristic) search strategies

based on an evaluation function $f: S \rightarrow R$

$$f(s) = g(s) + h(s), \text{ for a state } s$$

$g(s)$ (estimated) cost to reach s from I
$h(s)$ estimated cost to reach G from s
h is heuristic function

select state with minimum value of f

\Rightarrow

maintain set $\{S_{\text{obtained}}\}$ as priority queue, ordered by increasing f value

f reflects knowledge of the structure of state space
Heuristic Search Methods

"best-first" methods

\[h(s) = 0 \quad ==== \quad \text{Dijkstra's Algorithm} \]
\[\text{only cost} \]

\[g(s) = 0 \quad ==== \quad \text{greedy algorithm} \]
\[\text{only heuristic value considered} \]

\[h(s) \leq H(s) \quad ==== \quad \text{A* Search,} \]
\[\text{where } H(s) \text{ is "actual" cost from } s \text{ to } G \]
\[\text{if } h \text{ never overestimates total cost; such an } h \text{ is said to be } \textbf{admissible} \]

\[\text{if } h_1(s) \leq h_2(s) \leq H(s) \quad ==== \quad h_2 \text{ is } \textbf{more informed} \text{ than } h_1 \]
Heuristic Search

Important Results

A* Search
{using evaluation \(f = g + h \),
where heuristic \(h \) is admissible}

A* is also said to be admissible

if we select the state with lowest \(f \) then:
will find a minimum-cost path, if one exists;
(complete and optimal)

if \(h_1 \) and \(h_2 \) are both admissible
with \(h_1 \geq h_2 \) (\(h_1 \) is more informed)
then a less or equal number of states
will be developed
when using \(h_1 \) during search
Heuristic Search

Examples

A*

admissible heuristic functions
more informed heuristics

8-Puzzle

\[
\begin{array}{ccc}
1 & 5 & 7 \\
3 & 6 & 2 \\
4 & 8 & \\
\end{array}
\quad \rightarrow \quad
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \\
\end{array}
\]

marker problem

white white white <blank> black black black black

operators:

slide to neighbor blank
hop neighbor to blank
goal state: reverse initial pattern
Heuristic Search

A*

heuristic search lowers "effective branching factor"
not depth of solution

problem is the size of {Sobtained}
i.e., the space requirement

Iterative Deepening A*

Can we take the idea of depth-first
iterative deepening and apply
it in heuristic search to lessen the
memory burden of best-first search?
Iterative Deepening A*

search with score of f of root
 until forced to expand node with
 greater f value

search with next highest f score
 (seen on fringe of past search)
 until forced to go higher..

problems

only maintains its best first character
 when have a monotone f function
 increasing values: $f(\text{child}) \geq f(\text{parent})$

increasing f limit may only allow a few
 more states to be searched during an iteration
 implies time order squared the time of basic A*

solutions

increase f limit by some fixed amount e
 when find first solution know it is within e
 of optimal cost solution
 can complete search with that e
 to guarantee minimum cost solution
Planning and Means-Ends Analysis

Operator Selection

Means-Ends Analysis

only select those operators \{O_{\text{current}}\}
that are expected to reduce the difference
between S_{\text{current}} and G

Example

In water jug problem:
only pour-in when above goal
only bail-out when below

<table>
<thead>
<tr>
<th>G</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>17</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
GPS and Means-Ends Analysis

when problem solving, always have one of three goal types with associated methods

transform state1 into state2
reduce difference between state1 and state2
apply operator op to state1

transform(s1, s2) :

diff(s1, s2)? d -> reduce(s1, d) s3 -> transform(s3, s2)
 l
 done

reduce(s1, d) :

 op(d)? o-> apply(o, s1)
 l
 fail

apply(o, s1) :

 diff(s1, pre(o))? d-> reduce(s1, d) s2-> apply(o, s2)
 l
 do(o, s1)
GPS

Control

maintains a current goal ---
executes method associated with type
of current goal

always try to reduce difference
of greatest difficulty first ---
if a new goal has difference greater
than "prior" goal, will backup

if no operator available then backup

"Knowledge" Representation

table of connections
represents relevance of operators
to reducing differences

difference ordering
represents relative difficulty of
reducing differences
Means-Ends Analysis

STRIPS Planner

important step in implementing these ideas in a first planning system

introduces a proposition-based state representation

an algorithm (ala GPS) for solving problems by means-ends analysis

State Representation

states as sets of propositions of form

(relation-name arg1 arg2) zero or more arguments, all are constants..

state example

Blocks World

(clear A) A
(on A B) B
(on B C) C
(on C Table)
STRIPS

Operator Representation

(operator-name arg1..)
arguments are variables

preconditions (propositions in current state)
adds (propositions to add/positive)
deletes (propositions to remove/negate)

propositions can contain arguments variables

operator example

Blocks World

moveBlocktoBlock(?b1 ?b2 ?b3)

pre: ((on ?b1 ?b2) (clear ?b1) (clear ?b3))
add: ((on ?b1 ?b3) (clear ?b2))
del: ((on ?b1 ?b2) (clear ?b3))

movetoTable(?b1 ?b2) // Table always clear

movetoBlock(?b1, ?b2) // from Table
Means-Ends Analysis

STRIPS search

1. push G onto goal stack, followed by its individual propositions in some order on top; set S_current to I;

2. Until goal stack empty
 if top is operator o,
 then pop stack and apply o, generating new S_current
 adding o to solution or put preconditions on stack;
 if top is a proposition p
 if p in S_current
 then pop goal stack;
 else
 select operator o that adds p, and push o, followed by its preconditions, on top of goal stack;
 if top is a set of propositions,
 if all in G, pop stack
 else push propositions on stack

3. Report solution
 simplified.... no backtracking...
Means-ends Analysis

Strips Search

Consider this "laundromat problem":

I:
 ((AT washer) (INHAND bill) (WASHER off))
G:
 ((WASHER on))
O: (((START-WASHER)
 (P: (AT washer) (INHAND quarter)
 (WASHER off))
 (A: (WASHER on))
 (D: (WASHER off) (INHAND quarter)))
((GET-CHANGE)
 (P: (AT changer) (INHAND bill))
 (A: (INHAND quarter))
 (D: (INHAND bill)))
((WALK x y)
 (P: (AT x))
 (A: (AT y))
 (D: (AT x))))
STRIPS search

laundromat problem

CS: ((AT washer) (INHAND bill) (WASHER off))

Stack: ((WASHER on))

Stack: ((AT washer) (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

Stack: ((INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

Stack: ((AT changer) (INHAND bill) (do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

Stack: ((AT washer) (do (WALK washer changer))
 (AT changer) (INHAND bill) (do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

Stack: ((do (WALK washer changer))
 (AT changer) (INHAND bill) (do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))
STRIPS search
laundromat problem (continued)

CS: ((AT washer) (INHAND bill) (WASHER off))

Stack: ((do (WALK washer changer))
 (AT changer) (INHAND bill) (do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

..... check and can do (WALK washer changer)
CS: ((AT changer) (INHAND bill) (WASHER off))

Stack: ((AT changer) (INHAND bill) (do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

Stack: ((INHAND bill) (do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

Stack: ((do GET-CHANGE)
 (INHAND quarter) (WASHER off)
 (do START-WASHER) (WASHER on))

..... check and find can do GET-CHANGE
CS: ((AT changer) (INHAND quarter) (WASHER off))

 etc... to be finished
Blocks World

Sussman Anomaly

Goal
(on A B) A
(on B C) B C

Initial
(on C A) C
(on A TABLE) C
(on B TABLE) A B
(clear C) (clear B)

If choose goal (on B C) as difference

get to
 B C A

If choose goal (on A B) first

get to A
 B C
Non-Linear Planning

develop a partial-order plan

only ordered by linking additions to later preconditions

must maintain (protect) that precondition over the interval between being added and used

initial state adds conditions
goal state uses conditions (like preconditions)

(on C A)
(on B TABLE) (on A B)
[puton C TABLE] [puton A B]
(clear B)
[puton B C] (on B C)
(clear C)
Problem Reduction

Reduce Problem to And-Or Set of Subproblems

notion is that to solve original problem
must solve one of the or ed
sets of and ed subproblems

Reduction continues until
Primitive Problems are reached

Primitive Problem is one
solvable by known operator or plan

Reduction produces an

and-or tree

and node satisfied
if all descendants satisfied
or node satisfied if one satisfied

often gives us a recursive solution to problem