Main topics of the week:
- Review problems for midterm

Problem: Let $\Sigma = \{0,1\}$ and $A = \{ w \in \Sigma^* | w$ does not contain a pair of 1’s separated by an odd number of symbols}. Show that A is a regular language.

Proof: Consider the complement of the language A, i.e., all strings that do contain a pair of 1’s separated by an odd number of symbols. We can write a regular expression for this complement as $(0 \cup 1)^*1(0 \cup 1)((0 \cup 1)(0 \cup 1))1(0 \cup 1)^*$, showing the complement is a regular language. Since the complement of A is regular, A must be regular.

Problem: Let A be a regular language over the alphabet Σ. Show that $B = \{ x | x = yz$ for some $y \in A$ and some string $z \in \Sigma^* \}$ is a regular language.

Proof: Let R be a regular expression that describes A. Then $R\Sigma^*$ is a regular expression describing B. Alternatively, given an NFA for A, construct an NFA for B by adding a new accept state with ε transitions from the original accept states, and a loop for all symbols in Σ.

Problem: Let A be the language $\{a^ib^ja^k | k > i + j \}$. Prove that A is not regular.

Proof: Suppose that A is regular and let p be the value guaranteed by the pumping lemma. Consider the string $a^pb^pa^{p+2} \in A$. When realized as xyz, where $|xy| \leq p$ and $|y| > 0$, we see that y must be of the form a^k for some $k > 0$. Then $xyyz$ would look like $a^{p+k}ba^{p+2}$, and since $k \geq 1$, $p+k+1$ cannot be strictly less than $p+2$, meaning that $xyyz$ is not in the language, so A cannot be regular.

Problem: Let A be the language $\{(ab)^na^k | n > k$ and $k \geq 0 \}$. Prove that A is not regular.

Proof: Suppose that A is regular and let p be the pumping length. Consider the string $(ab)^pa^p \in A$. Take any decomposition as xyz with $|xy| \leq p$ and $|y| > 0$. Then we know that z ends with $(ab)^pa^p$. If y contains a b, then xz will have at most p b’s, so cannot be in A. Likewise, if y contains an a, then xz will have at most p a’s before the last b, so again cannot be in the language. Thus A cannot be regular.

Problem: Prove that the reverse of a regular language is a regular language.

Proof: Let A be a regular language and let $N = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing A. Define the NFA N' to be

$$(Q \cup \{s\}, \Sigma, \delta', s, \{q_0\})$$

where we define δ' by

$$\delta'(q, a) = \begin{cases} p & \text{if } \delta(p, a) = q \text{ and } q \neq s \\ F & \text{if } q = s \text{ and } a = \varepsilon \\ \emptyset & \text{otherwise} \end{cases}$$

Basically, we are defining N' to run N in reverse. We add a new start state and ε transitions to the accept states of N, then reverse all the transitions of N. If a string is in...
A, then its computation sequence ends in an accept state. When we feed the reverse of this string into \(N' \), we choose the \(\varepsilon \) transition to the accept state of \(N \), then choose the transitions corresponding to the ones from \(N \), and these will lead us to the start state of \(N \) which is the accept state of \(N' \). Likewise, a string accepted by \(N' \) describes a corresponding computation sequence in \(N \).

Problem: An All-Paths-NFA is a 5-tuple \((Q, \Sigma, \delta, q_0, F)\) like an NFA except that this automaton accepts a string if *every possible computation* of the string ends in an accept state. (Recall that in a regular NFA, if *some* computation ends in an accept state, then the string is accepted.) Prove that a language is regular if and only if it is recognized by an All-Paths-NFA.

Proof: If a language is regular, it is recognized by a DFA. Clearly, any DFA is also an All-Paths-NFA since in a DFA, a string has a unique computation sequence. For the other direction, given an All-Paths-NFA we will construct an equivalent DFA, using almost the same construction used to find an equivalent DFA for an NFA. Let \(P = (Q, \Sigma, \delta, q_0, F) \) be the All-Paths-NFA. Then the constructed DFA \(M = (2^Q, \Sigma, \delta', E(\{q_0\}), 2^F) \) recognizes the same language. This is just like the construction used to find an equivalent DFA for a given NFA except for the way the accept states are defined. The states of \(M \) are the subsets of \(Q \), the start state is the \(\varepsilon \) closure of the start state of \(P \), and the accept states of \(M \) are all the subsets of \(F \). The transition function \(\delta' \) is defined as \(\delta'(R, a) = \{ q | q \in E(\delta(r, a)) \text{ for some } r \in R \} \). If a string \(s \) is accepted by \(P \), then all paths through \(P \) result in acceptance. Thus \(s \) will be accepted by \(M \) since \(M \) was constructed to follow the paths of \(P \), and so all of these paths resulting in accept states of \(P \) does constitute an accept state of \(M \). Conversely, since the accept states of \(M \) consist only of accept states of \(P \), all paths in \(P \) for an \(M \)-accepted string are accepting paths in \(P \). Alternatively, we could define the NFA \(N \) to just be \(P \) with the accept and non-accept states reversed. Then because of the all paths property, \(N \) recognizes the complement of the language recognized by \(P \). But since the complement of a regular language is regular, this means the language recognized by \(P \) is regular.