Numeric Optimization

Background

Methods

Reading

- Wilkinson & Allen
 - Ch. 13: Searching and Optimization
- A Survey of Global Optimization Methods
 - a web site at Sandia National Labs:
 - from 1997, but it's a good overview

Terminology

The goal of an optimization problem is to find arguments x of a function f that provide the highest (or lowest) value:

- minimization: x s.t. $f(x) < f(x')$ for all $x \neq x'$
- maximization: x s.t. $f(x) > f(x')$ for all $x \neq x'$

- The function f is the objective function
- For functions of more than one variable x is a vector (a set of arguments)

Terminology (cont’d)

- In global optimization we’re looking for a minimum or maximum over all possible input arguments
- Plot is for scalar x (one-dimensional x)
Combinatorial Optimization
- In some problem areas the function domain is discrete.
- The goal is to find a combination of arguments that minimizes or maximizes the function.
- Example: VLSI circuit layout
 - A chip is built up over several layers.
 - Complex rules for elements in different layers crossing each other:
 - Metal: OK to cross.
 - Poly over diffusion: transistor.
 - Goal: minimum length paths, maximum number of circuits per chip.
 - Constraints: wire thickness, path separation, intersection areas.

Unconstrained Optimization
- In other domains variables can take on any real values.
- Example: maximum likelihood estimation
 - The "distance" between two sequences is a function of several evolutionary parameters.
 - \(p(A \rightarrow T) \)
 - \(p(A \rightarrow C) \)
 - Optimization problem: what parameter settings correspond to the most likely sequence of evolutionary events?

Examples (cont’d)
- DNA structure
 - Potential energy is the sum of seven different terms:
 - At right: bond length and bond angle.
 - Goal: find coordinates of atoms that give lowest energy.
 - There are some limitations (e.g., min or max bond lengths) but they usually don’t play a role in the optimization algorithm.

Examples (cont’d)
- Neural network models
 - A neuron (a node in this graph) has several input signals and one output.
 - The strength of the output \(y \) is a function of the inputs \(s \) and other parameters.
 - Networks are often “trained” to produce outputs in response to given inputs or sequences of inputs.
 - Training is an optimization problem: what parameter settings give the smallest difference between observed and expected outputs?

\[
S_j = \sum_{i=0}^{n_j} w_{i,j} x_j \quad y_j = f(s_j)
\]
Hill Climbing
- The simplest optimization algorithm is *hill climbing*
- For minimization in one dimension:

  ```
  \begin{align*}
  x &= \text{random} \\
  m &= f(x) \\
  \text{if } f(x + dx) > f(x) & \Rightarrow dx = -dx \\
  \text{while } f(x + dx) < m & \Rightarrow m = f(x + dx) \\
  x &= x + dx
  \end{align*}
  ```

Hill Climbing (cont’d)
- There are some obvious problems
 - potential for getting trapped in a local minimum
 - magnitude of dx
 - too big: won’t find min
 - too small: inefficient
- Difficult to generalize to multiple dimensions
 - e.g. “saddle points”

Hill Climbing (cont’d)
- Hill-climbing can be used as the basis for a *Monte Carlo* optimization algorithm
 - choose several random starting points
 - one or more searches should end up at the global minimum
- Monte Carlo methods were originally defined for numeric integration
- The Monte Carlo optimizer is easily parallelized
 - example of an “embarrassingly parallel” application
 - no communication between processes

Newton’s Method
- A better way to choose both the direction and size of the step is to use Newton’s method
- Recall from our discussion of difference methods:

 \[f(x + \Delta x) \approx f(x) + f'(x)\Delta x + f''(x)(\Delta x)^2/2 \]
- Choose step size using the slope of the surface at the current point:

 \[\Delta x = -f'(x)/f''(x) \]

  ```
  \begin{align*}
  xi &= \text{random} \\
  \text{repeat} & \\
  xj &= xi \\
  xi &= xj - f'(xj)/f''(xj) \\
  \text{until } \text{abs}(xi-xj) < \text{epsilon}
  \end{align*}
  ```
Multidimensional Searches

- A method similar to hill climbing can be applied to functions of more than one variable
- The gradient of a function f is
 \[\nabla f(x) = [f_{x_1}(x), f_{x_2}(x), \ldots, f_{x_n}(x)] \]
 where $f_{x_i}(x)$ is the partial derivative of f with respect to x_i

Steepest Descent

- The steepest descent algorithm is a generalization of hill climbing to functions of more than one variable
- The gradient of a function f is
 \[\nabla f(x) = [f_{x_1}(x), f_{x_2}(x), \ldots, f_{x_n}(x)] \]
 where $f_{x_i}(x)$ is the partial derivative of f with respect to x_i
- When the gradient function is evaluated at x, it points in the direction of the steepest descent
- Now we know the direction of the step -- but how far do we step?

- Find a that minimizes $f(x + a\nabla f(x))$
 - the gradient defines a direction
 - a is a scalar that specifies a distance in that direction

See Heath (2002) for more on this and other methods
- Newton’s method for multiple dimensions
- Conjugate gradient
Probabilistic Methods

- Newton’s method, steepest descent, and related algorithms all have two drawbacks:
 - the objective function must have a derivative
 - they can be caught in local minima
- The remaining slides introduce two probabilistic algorithms for finding the global minimum
 - use several different starting points
 - explore multiple paths from these points
 - no guarantee of finding the true minimum, but should find a better solution than a single search

Simulated Annealing

- In manufacturing, annealing is a process used to strengthen or remove defects from metals and ceramics
 - heat the metal to about half its melting point
 - slowly allow it to cool
 - slow cooling allows crystals to re-form
- Simulated annealing is a numeric optimization algorithm
 - initially, at high temperatures, search a wide area around the current best guess
 - as the algorithm progresses, lower the temperature: use smaller and smaller step sizes

Simulated Annealing (cont’d)

- Use the temperature T as the mean of a random number generator
 - $x_i = \text{random}$
 - $m = f(x_i)$
 - $T = T_{\text{max}}$
 - while $T > T_{\text{min}}$
 - repeat N times
 - $x_i = \text{random}(T)$
 - if $f(x_i) < m$
 - $x_m = x_i$
 - reduce T

Notes on Simulated Annealing

- The temperature reduction schedule is an important parameter
 - a common schedule is logarithmic
 - initially T decreases quickly, then more slowly
- Variations:
 - instead of remembering the best x at each T, do a “random walk”
 - take a step with high probability if it’s downhill
 - take uphill steps with $p(T)$
Performance of Simulated Annealing

- In practice annealing does a good job of avoiding local minima
- "Black art" in choosing annealing parameters
 - many domain-dependent heuristics, rules of thumb
- Annealing is often augmented with gradient descent at low temperatures
 - use high temps to avoid local minima
 - steepest descent will be better for the last few steps
- Annealing is easily parallelized
 - multiple starting points (embarassingly parallel)
 - partition N samples at current temp to N/P workers

Genetic Algorithms

- A genetic algorithm (GA) approach to optimization uses population modeling as a metaphor
 - a description of a solution is an individual
 - numeric optimization: x
 - neural net: complete set of weights and other params
 - maximum likelihood: transition matrix, other params
 - maintain a collection of solutions, called a population or generation
- Goal: let the population evolve, generating more fit individuals (better solutions) over time

New Generation

- Initialize the first population with random solutions
- Repeat until a good solution is found:
 - initialize the new generation with the N most fit individuals from the current generation
 - create new individuals to fill out the population
- Key step: new individuals are derived from current generation
- Point mutations make small changes

Crossovers

- Crossovers combine attributes from two individuals
 - the "descendants" have to be complete problem descriptions
 - make sure domain constraints are satisfied (e.g. in ML the sum of transition probabilities is 1.0 for each nucleotide)

Comments on GA

- Crossovers allow the algorithm to combine “subproblem” solutions
 - maybe one individual has an effective combination of parameters
 - this combination may be transferred intact to a new generation
- Honor diversity: GA will be like hill climbing if all individuals zero in on the same target
 - choose a few less fit individuals at each generation
 - maintain variation in the population

Project 5

- If you choose to do the optimization problem for project 5:
 - the distribution will include a simple neural network class
 - invoke methods to set or query network parameters
 - invoke another method to “run” the network on a set of inputs, get back an error value
- Your job: write the hill climbing and simulated annealing code that will find the best parameter combination