Information Search and Visualization

Chapter 14

Information Search and Visualization

- Who earns > $50,000 among the residents of Eugene, Oregon?

Stages of Action in Human-Computer Interaction
Introduction

- Information activities:
 - Information gathering
 - Searching versus browsing
 - Filtering
 - Information evaluation
 - How do I know?
 - Information analysis and interpretation
- Information activities are on-going, iterative tasks
 - Interruption and resumption
 - Trace of the information gathering tasks
 - Archiving and annotating

Introduction

- Problem: Huge volumes of computer-stored data available:
 - Databases
 - Structured relational Databases
 - contains relations and a schema to describe the relations
 - relations have records
 - records have fields, and fields have values: Textual document libraries
 - Multimedia document libraries
 - Contains images, sound, video, animations, etc
 - Digital archives are more loosely organized
 - Websites
 - Contains network of websites with network of web pages
 - Gigantic information resource
 - Contains text, audio, video, graphics, programs
 - Websites and Databases: Data mining
 - Data warehouses and data marts
 - Knowledge networks or semantic webs

Introduction

BUT searching and discovering is difficult:

- Traditional interfaces have been difficult for novice users
 - Command Languages
 - Complex commands
 - Limited operators
 - Unusually concepts
 - EXAMPLE: SQL query language to relational databases

- Traditional interfaces have been inadequate for expert users
 - Difficulty in repeating searches across multiple databases
 - Weak methods for discovering where to narrow broad searches
 - Poor integration with other tools
Introduction

- Solution: Developing more powerful search and visualization methods, integration of technology with task
 - Searching in Textual Documents and Database Querying (Chapter 14.2)
 - From title in HTML, instead of SQL, query language
 - Controllable search options and displays using control panels
 - Design using statistical frequency of occurrence of words to determine meaning
 - Multimedia Document Searches (Chapter 14.3)
 - Audio recognition for picture searching
 - Advanced Filtering and Search Interfaces (Chapter 14.4)
 - Designers are just learning how to present large amounts of data in order and user-controlled ways (Chapter 14.5)
 - Information visualization

Searching in textual documents and database querying (Chap 14.2)

- Traditional information finding resources
 - Finding aids
 - Table of contents, indexes, description introductions, subject classification, key word in context (KWIC)
 - Preview and overview surrogates
- Searching in structured relational database systems well established task using SQL command language
 - Users write queries that specify matches on attribute levels
 - Example of SQL command
 - SELECT DOCUMENT
 - WHERE title = 'title
 - AND author = 'author
 - AND language = 'language
 - SQL has powerful features, but it requires 2 to 30 hours training
 - While SQL is a standard form-Bit queries have simplified query formulation
 - Finding a way not to overwhelm novice users is a challenge

Searching in textual documents and database querying

- New searching and querying interfaces
 - WWW search engines
 - Google, Yahoo, etc.
 - Natural language integration into text searching
 - Word web sites, search engines have greatly improved search performance by using additional clues and the information on the site of hypertext document

- WWW to Database interfaces
 - From title in HTML, instead of SQL, query language
 - Controllable search options and displays using control panels
- Evidence shows that users perform better and have higher satisfaction when they can view and control the search
Searching in textual documents and database querying

- **Searching & Querying User Interfaces: Basic tasks**
 - Overview
 - Gain an overview of the entire collection
 - Adjoining detail view
 - The overview might contain a movable field-of-view box to control the contents of the detail view
 - Zoom
 - Zoom in on items of interest
 - Need to maintain context
 - Particularly important for small displays
 - Filter
 - Filter out uninteresting items
 - Allows user to reduce size of search

- **Details-on-Demand**
 - Select an item or group and get details when needed
 - Useful to preview a good item
 - Usually click on an item and review details in a separate or pop-up window

- **Rota**
 - View relationships among items
 - Use human perceptual ability – proximity, containment, connected line, color coding
 - Example: Set directors name, and view all movies with that director

- **History**
 - Keep a history to allow undo, replay, and progressive refinement
 - Allows a mistake to be undone, or a series of steps to be replayed

- **Extract**
 - Extract the items or data
 - Save to file, print, or drag to another application

- **Example: ZFIN database**
 - WWW Genetics database for zebrafish
 - Used by international research scientists
 - Developed at UO by S.Douglas (CS) and Monte Westerfield (Neuroscience Institute), 1994-2005

 <http://zfin.org>

 Search for gene "cox"
 Search for mutant "cyclops"
Multimedia document searches
(Chapter 14.3)

• Searches for databases and textual documents are good, but multimedia searches are in a primitive stage

• Current multimedia searches require descriptive documents or metadata searches

• Search by date, text captions, or media is possible

• Useful to have computers perform some filtering

• New systems will incorporate powerful annotation and indexing, with better search algorithms and browsing

Multimedia document searches
(Chapter 14.3)

• Image Search:
 - Finding photos with images such as the Statue of Liberty is a challenge
 - Query-by-Image-Content (QBIC) is difficult
 - Search by profile (shape of lady), distinctive features (torch), colors (green copper)
 - Use simple drawing tools to build templates or profiles to search with
 - More success is attainable by searching restricted collections
 - Search a vase collection
 - Find a vase with a long neck by drawing a profile of it
 - Critical searches such as fingerprint matching requires a minimum of 20 distinct features
 - For small collections of personal photos effective browsing and lightweight annotation are important

Multimedia document searches
(Chapter 14.3)

• Map Search
 - On-line maps are plentiful
 - Search by latitude/longitude is the structured-database solution
 - Today's maps are allow utilizing structured aspects and multiple layers
 • City, state, and site searches
 • Flight information searches
 • Weather information searches
 • Example: www.mapquest.com
 - Mobile devices can allow "here" as a point of reference
Multimedia document searches (Chapter 14.3)

- Design/Diagram Searches
 - Some computer-assisted design packages support search of designs
 - Allows searches of diagrams, blueprints, newspapers, etc.
 - E.g. search for a red circle in a blue square or a paton in an engine
 - Document structure recognition for searching newspapers

- Sound Search
 - MRI supports audio input
 - Search for phone conversations may be possible in future on speaker independent basis

- Video Search
 - Provides an overview
 - Segmentation into scenes and frames
 - Support multiple search methods
 - Info media project

- Animation Search
 - Prevalence increased with the popularity of Flash
 - Possible to search for specific animations like a spinning globe
 - Search for moving text on a black background

Advanced filtering and search interfaces (Chap 14.4)

For advanced uses there are alternatives to form fill in query interfaces:

- Filtering with complex boolean queries
 - Problem with informal English, e.g. use of "and" and "or"
 - Venn diagrams, decision tables, and metaphor of water flowing have not worked for complex queries

- Dynamic Queries - Adjusting sliders, buttons, etc and getting immediate feedback
 - "direct-manipulation" queries
 - Use sliders and other related controls to adjust the query
 - Get immediate (less than 100 msec) feedback with data
 - Dynamic Home/Info and Blue File
 - Hard to update fast with large databases

- Query previews present an overview to give users information and the distribution of data and thereby eliminate undesired items

- Faceted metadata search
 - Integrates category browsing with keyword searching
 - Flameco

Interactive Graphics
Advanced filtering and search interfaces (Chap 14.4)

- Collaborative Filtering
 - Groups of users combine evaluations to help in finding items in a large database
 - User "votes" and his info is used for rating the item of interest
 - E.g. a user rating sex restaurants highly is given a list of restaurants also rated highly by those who agree the six are good
- Multilingual searches
 - Current systems provide rudimentary translation searches
 - Prototypes of systems with specific dictionaries and more sophisticated translation
- Visual searches
 - Specialized visual representations of the possible values
 - E.g. dates on a calendar or seats on a plane
 - On a map the location may be more important than the name
 - Implicit initiation and immediate feedback

Information visualization (Chapter 14.5)

- Information visualization Definition
 - Use of interactive visual representations of abstract data to amplify cognition
 - Categorical variables and the discovery of patterns, trends, clusters, outliers, and gaps
 - Innovative ways of visualizing the data
- Compare to Scientific visualization
 - Continuous variables, volumes and surfaces

3D Histogram

Who earns > $50,000?
Tree Map Visualization

How a Tree Map Works

Summary

Problem: Huge volumes of computer-stored data available
- Databases
 - Structured relational Databases
 - Multimedia document libraries
- Websites
- Websites and Databases: Data mining

BUT searching and discovering is difficult:
- Traditional interfaces have been difficult for novice users
 - Limited to language
- Traditional interfaces have been inadequate for expert users
 - Difficult to express queries across multiple relations
- Weak methods for discovering where to navigate broad searches
- Poor integration with other tools

Solution: Developing more powerful search and visualization methods, integration of technology with task
- Searching in Textual Documents and Database Querying (Chapter 14.3)
- Multimedia Document Retrieval (Chapter 14.4)
- Web Information Retrieval (Chapter 14.5)
- Designing user interfaces that present large amounts of data in orderly and user-controlled ways
 - "Information Visualization"