Chapter 9

Interaction Devices

9.4 Speech & Auditory Interfaces
9.5 Displays

Auditory interfaces

• Audio tones, audiolization, and music
 – Sound feedback can be important:
 • to confirm actions
 • offer warning
 • for visually-impaired users
 • music used to provide mood context, e.g. in games
 • can provide unique opportunities for user, e.g. with simulating various musical instruments

Speech Interfaces

• Human Language Processing
 – Stages
 • Speech Recognition
 • Natural Language Understanding (NLP)
 • Natural Language Production (NLP)
 • Speech Synthesis
 – Speech processing totally separate from NLP
 – Speech recognition and NL understanding much harder than NL production and speech synthesis
 – Speech processing is usually real-time interaction
 – NLP is usually text processing and not real-time interaction
Speech Recognition- A very hard problem!

“We saw you a to-ah.” “I know your mom.”

Speech recognition

- Speech recognition still does not match the fantasy of science fiction:
 - Only successful for limited vocabulary tasks with acceptable failures
 - Most suitable when hands cannot be used
 - Voice-controlled editor versus keyboard editor
 - lower task-completion rate
 - lower error rate
 - May be disturbing in some environments
 - Does not require natural language systems
 - Most useful in specific applications, such as to benefit handicapped users

Speech recognition

- Dimensions of difficulty
 - Isolated (discrete) words vs. continuous speech
 - Discrete: 95- to 98-percent reliability for 20 to 200 word vocabularies
 - Continuous
 - Difficulty in recognizing boundaries between spoken words
 - Words acoustically confusable
 - “see care you a prin’”
 - “recognize speech” or “smack a nice beach”
 - Vocabulary size
 - Search increases exponentially with vocabulary size
 - Speaker dependent vs. independent
 - Speaker dependent must be trained: go through vocabulary twice
 - Speaker independent: very limited application
 - Noisy environment
Speech Processing

• Stored Speech systems
• Speech Synthesis systems

Stored Speech synthesis

• Voice information systems
 – Stored speech commonly used to provide information about tourist sites, government services, after-hours messages for organizations
 – Low cost
 – Voice prompts
 – Deep and complex menus frustrating
 – Slow pace of voice output, ephemeral nature of speech, scanning and searching problems
• Applications
 • Voice mail
 • Handheld voice recorders
 • Audio books
 • Instructional systems

Speech Synthesis

• Converts text to language sounds (phonemes)
• Can choose pitch, speed, type of voice
• Does not handle continuous speech well
 – Conversion is one word to a sequence of sounds
 – Lacks cadence
 – Lacks emphasis in loudness and speed of delivery
Speech synthesis

- Speech generation
 - Michaelis and Wiggins (1982) suggest that speech generation is "frequently preferable" under these circumstances:
 - The message is simple.
 - The message is short.
 - The message will not be referred to later.
 - The message deals with events in time.
 - The message requires an immediate response.
 - The visual channels of communication are overloaded.
 - The environment is too brightly lit, too poorly lit, subject to severe vibration, or otherwise unsuitable for transmission of visual information.
 - The user must be free to move around.
 - The user is subjected to high G forces or anoxia.

Displays

- The display has become the primary source of feedback to the user from the computer
 - The display has many important features, including:
 - Physical dimensions (usually the diagonal dimension and depth)
 - Resolution (the number of pixels available)
 - Number of available colors, color correctness
 - Luminance, contrast, and glare
 - Power consumption
 - Refresh rates (sufficient to allow animation and video)
 - Cost
 - Reliability
Displays

Human Factors Issues:
• Realism and Quality (Psychophysics)
• Portability
• Privacy
• Simultaneity (Screen Real Estate)

Novel Display technology

• Electronic ink
 – Paper like resolution
 – Tiny capsules with negatively and positively charged particles
• Braille displays
 – Provides output for the blind
• 3D Display with Stereo Glasses
 – Two images displayed, one for each eye
 – Depends on brain of viewer to “fuse” the image as 3D (depth)

3D Display with Stereo Glasses
Displays – Large

- Large displays
 - Multiple desktop displays
 - Informational wall displays
 - Interactive wall displays

Multi Display (Desktop)

Multiple Displays (Avionics)
Princeton Wall Display

“Walkaround” display with Stereo Glasses

Displays Head Mounted

• Heads-up and helmet mounted displays
 – A heads-up display can, for instance, project information on a partially silvered widescreen of an airplane or car
 – A helmet/head mounted display (HMD) moves the image with the user
 – 3D images
Head Mounted Display

Head Mounted Display & Data Glove (Virtual Reality)

Small displays (Mobile phone)

- 640 x 480 is large display!
 - Custom designs to take advantage of every pixel!
 - Okay for linear reading, but making comparisons can be difficult
- Currently mobile devices used for brief tasks, except for game playing
- Multi-media (and function)
 - Camera phones
 - MP3 players
 - Web browsing difficult
- Optimize for repetitive tasks
Animation, image, and video

- Accelerated graphics hardware
- More information shared and downloaded on the web
- Scanning of images and OCR
- Digital video
- CDROMS and DVDs
- Compression and decompression through MPEG
- Computer-based video conferencing