Logic Programming

- Programming paradigm based on symbolic logic
 - First order predicate calculus using constants, predicates, functions, variables, connectives, quantifiers, punctuation
- Start with axioms
 - Prove theorems
 - Proof is a kind of computation
- A program in the logic paradigm
 - A collection of statements is assumed to be correct
 - A desired fact is derived by some automatic application of inference rules

Example of Inference

- Assumptions
 - A horse is a mammal.
 - A human is a mammal.
 - Mammals have four legs and no arms, or two legs and two arms.
 - A horse has no arms.
 - A human has arms.
- A theorem
 - A horse has four legs.
As Horn Clauses

- Horn clauses are implications:
 - head ← body, where body is a collection of simple statements
- Examples
 - mammal(horse). *An axiom is a head with empty body.*
 - mammal(human).
 - legs(x,2) ← mammal(x), arms(x,2)
 - legs(x,4) ← mammal(x), arms(x,0)
 - arms(horse,0) .
- Query (theorem to be proved)
 - ← legs(horse,4)

Resolution and Unification

- Resolution inference rule:
 - If we have two clauses and head of first matches statement in the body of the second, then we can replace it by the body of the first
- Example: suppose we have two clauses
 - b ← a
 - c ← b
 - Then we can infer
 - c ← a
 - Essentially, we combine heads and bodies, then cancel matching statements on both sides
- Unification – pattern matching to make statements identical
 - Variables set to patterns, i.e., variables are instantiated
Using Resolution and Unification

- Given
 - mammal(horse).
 - arms(horse,0).
 - legs(x,2) ← mammal(x), arms(x,2)
 - legs(x,4) ← mammal(x), arms(x,0)
- Query
 - legs(horse,4)
- Inference
 - Use 4th rule to get: legs(x,4) ← mammal(x), arms(x,0), legs(horse,4)
 - Match x to horse: legs(horse,4) ← mammal(horse), arms(horse,0), legs(horse,4)
 - Cancel to get: ← mammal(horse), arms(horse,0)
 - Use 1st rule: mammal(horse) ← mammal(horse), arms(horse,0)
 - Cancel to get: ← arms(horse,0)
 - Use 2nd rule: arms(horse,0) ← arms(horse,0)
 - Cancel to get: ←, which shows the query is true.

A more program like example

- Greatest common divisor
- Given
 - gcd(u,v,w). (the gcd of a number and zero is that number)
 - gcd(u,v,w) ← not zero(v), gcd(v, u mod v, w). (the gcd of two numbers is the same as the gcd of the second and the mod of the two)
- Query
 - gcd(15,10,x)
- Inference
 - 2nd rule, unification: gcd(15,10,x) ← not zero(10), gcd(10,15 mod 10,x),gcd(15,10,x)
 - Cancel to get: ← not zero(10), gcd(10,15 mod 10,x)
 - Use arithmetic, basic properties: ← gcd(10,5,x)
 - 2nd again: gcd(10,5,x) ← not zero(5), gcd(5,10 mod 5,x),gcd(10,5,x)
 - Cancel to get: ← not zero(5), gcd(5,10 mod 5,x)
 - Simplify again: ← gcd(5,0,x)
 - This matches first rule (with x=5): gcd(5,0,5) ← gcd(5,0,5), so answer x=5 is true
Prolog

- Widely used logic programming language
 - Based on Horn clauses
 - Uses linear depth first strategy
- Interpreted
- Syntax
 - Use :- for implications
 - Variables capitalized
 - Builtin arithmetic
 - Comparison dicey – must force evaluation using 'is'
 - Statements terminated with period
 - 'consult' used to read assertions

Prolog Example

- File 'gcd' contains
 \[
gcd(U, 0, U) \cdot\n\]
 \[
gcd(U, V, W) \ :- \ (V=\not=0), \text{R is } U \mod V, gcd(V, R, W).\n\]
- A Prolog session
 \[
| \ ?- \ consult('gcd'). \\n\{\text{consulting } /\text{nfs/home/faculty/datkins/prolog/gcd...}\} \\nyes \\n| \ ?- \ gcd(15, 10, X). \\n\text{X = 5} ? \\nyes \\n| \ ?- \ gcd(96, 5, X). \\n\text{X = 1} ? \\nyes \\n| \ ?- \ gcd(96, 60, X). \\n\text{X = 12} ? \\nyes \\n| \ ?- \n\]

Another Prolog Example

- File 'append' contains

  ```prolog
  append([], Y, Y).
  append([H|X], Y, [H|Z]) :- append(X, Y, Z).
  ```

- Prolog session

```prolog
| ?- consult('append').
{consulting /nfs/home/faculty/datkins/prolog/append...} yes
| ?- append([a,b],[c,d,e], [a,b,c,d,e]).
yes
| ?- append([a,b],[c,d,e],X).
X = [a,b,c,d,e] ?
yes
| ?- append([a,b],X, [a,b,c,d]).
X = [c,d] ?
yes
| ?- append(X, [d,c], [a,b,c,d]).
no
```