Efficiency of Algorithms

- Memory keeps getting bigger, processors faster (Moore's Law), both cheaper, so why care about efficiency?
 - Problems get bigger, too
 - Big problems may overwhelm the best resources
 - Speed still a concern (how long do you want to wait for Goggle?)

Measuring Algorithm Efficiency

- How to compare two algorithms?
- Could code both and run the programs, but results may be confounded by
 - Language choice, machine choice
 - Coding style
 - Input data choice
- Want to measure essential efficiency of algorithm without these factors
Complexity Analysis

- Assess the efficiency of the algorithm, not a specific program implementation
 - Important for choosing best solution
 - Focus is efficiency of algorithm, not saving compute time with coding tricks
 - Concerned with savings as problem grows in size – does the algorithm scale up

Measuring Algorithms

- Time
 - Number of steps executed
 - Assignments, tests, arithmetic, etc.

- Space
 - Amount of memory needed
 - Variables, arrays, lists, dynamic objects

- How do these measures change with problem's size
RAM Complexity Model

- Estimate time-space needs of computation assuming basic machine (von Neumann architecture)
 - Processor performs operations on data
 - Data in random access memory with equal time access to all cells
 - Bus transfers data between processor and memory

RAM Complexity Model

- Times for machine operations
 - tfetch, tstore
 - tadd, tsub, tmult, tdiv, tcompare, ...
 - tbranch, treturn

- Examples
 - \(x = y; \) // tfetch + tstore
 - \(x = y + z; \) // 2*tfetch + tadd + tstore
factorial Time Analysis

of executions Execution Time

factorial(n)
1 tfetch+tstore
1 tfetch+tstore
n-1 2*tfetch+tcomp+tbr
n-1 tfetch+tadd+tstore
n-1 2*tfetch+tmult+tstore
1 tfetch+treturn

Simplify Model

- Constants for each instruction set

 factorial(n)

 result = 1; c_0
 for (i=2; c_0
 i <= n; (n-1)*c_1
 ++i) (n-1)*c_2
 result *= i; (n-1)*c_3
 return result; c_4

- Total time: \((2*c_0-c_1-c_2-c_3+c_4)+n*(c_1+c_2+c_3)\)
 or just: \(k_0 + n*k_1\)
Execution Time

- Instruction times depend on machine, but constant on a particular machine
- Constant times not so important (a faster machine will come along)
- Algorithm time can be expressed as a function of the input size: $t(n)$
 - Number of primitive steps needed for input n

Complexity Measure

- Algorithms have conditional steps (selection statements) and iteration (loops) that depend on data values
 - Even for same size inputs, data values may change way algorithm executes
 - Possible different time complexity for same input size
- Need to look at best, average, and worst cases
 - Define time complexity to be worst case
 - Sometimes practical considerations still mean a poor worst case algorithm is a better choice
isMember Example

- Given \(n \) objects held in array \(a \),
 Return true if object \(x \) is in the array,
 false otherwise

```java
boolean isMember(Object x, Object [] a) {
    boolean result = false;            // Default is not found
    for (int i=0; i < a.length; ++i) {  // Loop through all
        if (x.equals(a[i])) {
            result = true;                // If found, return true
            break;                        // terminate loop
        }
    }
    return result;
}
```

isMember Time Analysis

```java
boolean isMember(Object x, Object [] a) {
    boolean result = false;            // Default is not found
    for (int i=0; i < a.length; ++i) {  // Loop through all
        if (x.equals(a[i])) {
            result = true;                // If found, return true
            break;                        // terminate loop
        }
    }
    return result;
}

worst case: \( 2 \cdot c \cdot n + 3 \cdot c \)
```
Time Analysis

- May focus on certain operations for time estimate (active operations)
- For isMember
 - Number of calls to equals
 - best case: 1 (when x is first element)
 - worst case: n (when x is last or not found)
 - Number of assignments to result
 - best case: 1 (when x is not found)
 - worst case: 2 (when x is found)

Counting Inversions

- Given an integer array, return number of times i^{th} element is greater than $i+1^{th}$

```java
int adjacentInversions(int[] a) {
    int count = 0; // Default is none
    for (int i = 0; i < a.length - 1; ++i) {
        if (a[i] > a[i + 1]) {
            ++count;
        }
    }
    return count;
}
```

worst case: $3 \cdot c \cdot n + c$

min max Example

- Given array of numbers,
 Return the minimum and maximum

```java
int[] findMinMax(int[] a) { // Assume at least one value
    int[] result = new int[2];
    result[0] = result[1] = a[0]; // Default min, max
    for (int i=1; i < a.length; ++i) { // Loop through all
        if (a[i] < result[0])
            result[0] = a[i]; // New minimum
        if (a[i] > result[1])
            result[1] = a[i]; // New maximum
    }
    return result;
}
```

findMinMax Analysis

- Number of comparisons
 - All cases: $2n - 2$
 (we are looping for all but first)
 - What if second "if" changed to "else if"

- Number of assignments to result
 - Best case: 2 (min, max same and first value)
 - Worst case: n (increasing values)
Another minmax Algorithm

```java
int[] findMinMax(int[] a) { // Assume length even, > 1
    int[] res = new int[2];
    int[] lres = new int[2];
    if (a[0] > a[1]) // Local min, max of first two
        { res[0] = a[1]; res[1] = a[0]; }
    else
        { res[0] = a[0]; res[1] = a[1]; }
    for (int i=2; i < a.length; i+=2) { // Loop by pairs
        if (a[i] > a[i+1]) // Local min, max of next two
            { lres[0] = a[i+1]; lres[1] = a[i]; }
        else
            { lres[0] = a[i]; lres[1] = a[i+1]; }
        if (lres[0] < res[0]) res[0] = lres[0]; // update
    }
    return res; // worst case: 1 + 3(n-2)/2 comparisons
}
```

Algorithm Growth Rates

- Measures expressed in terms of input size for best, worst cases
 - Functions can be complicated formulas
 - How to compare for significant differences?
- For small input size, we don't care
- For constant factors of difference, we don't care as much
 - Speed of machine addresses this
- Major concern is how quickly it grows with the input size
Algorithm Growth Rates

For example, suppose
 - Algorithm A is proportional to n
 - Algorithm B is proportional to n^2
 - Clearly, algorithm A is a better choice if n > 1

What if
 - Algorithm A takes time \(5 \cdot n \)
 - Algorithm B takes time \(n^2 / 5 \)
 - Which is better?

Big O notation allows us to quantify

Figure 9.1
Time requirements as a function of the problem size \(n \)
Big O Notation

- Measure of order of magnitude of growth
 - Let \(n \) represent size of problem (e.g., number of elements in an array)
 - Suppose algorithm has complexity function \(f(n) \)
- Definition: The algorithm of complexity \(f(n) \) is said to be of order \(g(n) \), denoted \(O(g(n)) \) if there is a constant \(c \) such that \(f(n) \leq c \cdot g(n) \) for all \(n > n_0 \)

- Big O is a meaningful approximation
 - \(g(n) \) bounds \(f(n) \) from above for large enough \(n \)
 - We say "\(f(n) \) is Big-O of \(g(n) \)"

Order-of-Magnitude Analysis and Big O Notation

<table>
<thead>
<tr>
<th>Function</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\log_2 n)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>(n)</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>(n \times \log_2 n)</td>
<td>30</td>
<td>664</td>
<td>9,965</td>
<td>10^5</td>
<td>10^6</td>
<td>10^7</td>
</tr>
<tr>
<td>(n^2)</td>
<td>10^2</td>
<td>10^4</td>
<td>10^6</td>
<td>10^8</td>
<td>10^{10}</td>
<td>10^{12}</td>
</tr>
<tr>
<td>(n^3)</td>
<td>10^3</td>
<td>10^6</td>
<td>10^9</td>
<td>10^{12}</td>
<td>10^{15}</td>
<td>10^{18}</td>
</tr>
<tr>
<td>(2^n)</td>
<td>10^3</td>
<td>10^{10}</td>
<td>10^{30}</td>
<td>10^{301}</td>
<td>10^{3,010}</td>
<td>10^{301,030}</td>
</tr>
</tbody>
</table>
Order-of-Magnitude Analysis and Big O Notation

Figure 9.3b
A comparison of growth-rate functions: b) in graphical form

Showing Big O Complexity

- Prove \(n^2 + n \) is \(O(n^2) \)
 - Let \(c=2 \), let \(n_0=1 \), then \(cn_0^2 = 2 \geq n_0^2 + n_0 = 2 \)
 - For \(n > 1 \), \(n^2 = n^2 + n^2 > n^2 + n \)
- \(2n^3 + 10n^2 + 1000 \) is \(O(n^3) \)
 - Let \(c=1012 \) and let \(n_0=1 \)
- Rule 1: Big-O of a polynomial is the highest power of \(n \) after eliminating coefficients
- Rule 2: An exponential in \(n \) dominates all polynomial terms
 - \(2^n + n^4 \) is \(O(2^n) \)
Big O Analysis

- Relation of common functions:
 \[O(1) < O(\log_2 n) < O(n) < O(n \cdot \log_2 n) < O(n^2) < O(n^3) < O(2^n) < O(n!) \]

- Properties of Big O

 - May ignore low-order terms
 - May ignore multiplicative constant in high-order term

 \[O(f(n)) + O(g(n)) = O(f(n) + g(n)) = O(\max[f,g]) \]
 \[O(f(n)) \cdot O(g(n)) = O(f(n) \cdot g(n)) \]

- So the two algorithms for minmax are both \(O(n) \)

 - Second algorithm is faster, but
 - the "shape" of the growth of complexity is the same

Other Complexity Measures

- Omega: we say \(f(n) \) is \(\Omega(g(n)) \) if there is a constant \(c \) such that \(f(n) \geq c \cdot g(n) \) for all \(n > n_0 \)

 - \(g(n) \) bounds \(f(n) \) from below for large \(n \)

- Theta: we say \(f(n) \) is \(\Theta(g(n)) \) if and only if \(f(n) \) is \(O(g(n)) \) and \(\Omega(g(n)) \)

 - \(g(n) \) bounds \(f(n) \) from above and below for large \(n \)

 - Typically this is a simpler function that closely approximates growth – a "tight" Big O bound

 - Moving \(g \) up a constant factor, \(g \) dominates \(f \)

 - Moving \(g \) down a constant factor, \(f \) dominates \(g \)
Iterative Complexity

- A loop may have sequences, conditions and selection of procedure calls (which are other algorithms)
 - How do we determine Big-O for an iterative solution, i.e., how to combine complexity measurements?
- Sequential
 - Just add complexity of components in sequence (which means find the max complexity)
- Repetition
 - Count repetitions (another complexity measurement) and multiply by complexity of block repeated
- Combine these to determine complexity of overall algorithm
 - Keeping worst case in mind

Iterative Complexity Example

- Suppose we have methods do-x, do-y, and do-z with complexities $O(1)$, $O(n)$, and $O(n \cdot \log n)$ respectively

```c
void do-it(int [] a) {
    for (int i=0; i<n; ++i) {
        j<n; ++j) {
            if ((i%2)==0) {
                for (int j=0; j<n; ++j) {
                    for (int i=0; i<n; ++i) {
                        k<n; ++k) {
                            do-x();
                            do-y(a); }
                        do-z(a); }
                    do-z(a); }
                do-y(a); }
            do-x(); }
        do-y(a); }
    do-it(int [] a) {
        for (int i=0; i<n; ++i) {
            j<n; ++j) {
                if ((i%2)==0) {
                    for (int j=0; j<n; ++j) {
                        for (int i=0; i<n; ++i) {
                            k<n; ++k) {
                                do-x();
                                do-y(a); }
                            do-z(a); }
                        do-z(a); }
                    do-y(a); }
                do-x(); }
            do-y(a); }
        do-it(int [] a) {
            for (int i=0; i<n; ++i) {
                j<n; ++j) {
                    if ((i%2)==0) {
                        for (int j=0; j<n; ++j) {
                            do-x();
                            do-y(a); }
                        do-z(a); }
                    do-z(a); }
                do-y(a); }
            do-y(a); }
```

<table>
<thead>
<tr>
<th>Complexity</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
</tr>
<tr>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Week 2 CIS 212 Spring 2006 27

Week 2 CIS 212 Spring 2006 28
Selection in a Loop

- Must consider how often selection is made
- Assume \(f(n) \) is \(O(n^2) \) and \(g(n) \) is \(O(n \cdot \log n) \)

```c
O(n) for (int i=0; i<n; ++i) {
    if ((i%2 == 0)
        x += f(n);
    else
        x += g(n);
}
```

```c
O(n/2) for (int i=0; i<n/2; ++i) {
    if (i < 10)
        x += f(n);
    else
        x += g(n);
}
```

```c
O(10) for (int i=0; i<10; ++i) {
    x += f(n);
    else
        x += g(n);
}
```

Set Algorithms

- If you go through all \(n \) elements in a set a constant number of times and do a constant amount of work per element each time, then the algorithm is \(O(n) \).
- If you go through \(O(f(n)) \) elements in a set \(O(g(n)) \) number of times and do \(O(h(n)) \) work per element each time, then the algorithm is \(O(f(n) \cdot g(n) \cdot h(n)) \).
- Recall isMember algorithm
 - Worst case and average case are \(O(n) \)
 - Best case was \(O(1) \)
 - Best case – element located in first fixed number of positions
 - Self organizing lists and arrays – when element is accessed, move it closer to front
 - Assumes most requests are about a few elements
Set Operation Complexity

- Using an array for the elements of a set

```java
interface SetI {
    boolean isEmpty(); O(1)
    int size(); O(1)
    boolean isMember(int val); O(n)
    void addElement(int val) O(n)
    void deleteElement(int val); O(n)
}
```

Improve to $O(\log n)$ by keeping elements in increasing order and using Binary Search

Binary Search

- Array elements are kept in increasing order
- isMember(39) – how many steps to determine if the value 39 is in the array?

```
2  7  13  17  20  32  39  46  64  80
```

- Split problem in half each time, so worst case is least k such that $2^k \geq n$
- Algorithm is $O(\log n)$
Binary Search Implementation

- Array is sorted by increasing value

```java
boolean isMember(Object x) {
    int low=0; high=a.length()-1; // Entire array
    while (low <= high) { // Segment to look at
        int mid = (low + high)/2; // Find midpoint
        if (x.equals(a[mid])) // Compare to mid element
            return true;        // if found, return true
        else if (x.lessThan(a[mid])) // Adjust range down
            high = mid – 1;   // to bottom half
        else                          // Adjust range up
            low = mid + 1;      // to top half
    }
    return false;                   // Not found
}
```

Some Useful Formulas

- Sum from 0 to n \[\sum_{i=0}^{n} i = n(n+1)/2 = O(n^2) \]
- Sum from 0 to n^k \[\sum_{i=0}^{n^k} i = n^k(n^k+1)/2 = O(n^{2k}) \]
- Sum of k powers from 0 to n \[\sum_{i=0}^{n} x^i = O(n^{k+1}) \]
- Sum of powers from 0 to n of 2 \[\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 = O(2^n) \]
- Number of times one can divide n by m before reaching l \[\left| \log_m n \right| = O(\log n) \]