Answer Keys for Assignment 2 (based on the version provided by Paea LePendu)
Database Processing CIS 451/551

1.
 a) update works set salary = salary * 1.04
 where name in (select distinct(manager_name) from manages)
 and salary >= 10,000

 update works set salary = salary * 1.05
 where name in (select distinct(manager_name) from manages)
 and salary < 10,000

 update works set salary = salary * 1.02
 where name NOT in
 (select distinct(manager_name) from manages
 where manager_name is not null)
 *EXTRA CREDIT if add this line

 b) create view startup_managers as
 select employee_name
 from works, manages
 where works.employee_name = manages.manager_name
 and works.company_name = ‘Startup Corp’
 and salary >= 50,000

 delete from employee
 where employee_name in startup_managers

 delete from works
 where employee_name in startup_managers

 delete from manages
 where employee_name in startup_managers

 EXTRA CREDIT: clean up foreign key dependencies in manages
 (students can cascade delete, or otherwise deal with it in their own way)

2. create view all_workers(name) as
 select name from salaried_worker
 union
 select name from hourly_worker

 Updates shouldn’t be allowed through this view because of the union. Two tables may
 share same names. Updates on this view are problematic – which underlying table should you
 update the name into? Also, there will necessarily be null values no matter which table you
 chose, which we like to avoid.
3. a)
\[
\text{select E.name} \\
\text{from A.employee as E} \\
\text{union} \\
\text{select W.name} \\
\text{from B.all_workers as W} \\
\] * this assumes the view in #2 otherwise elaborate \\
b)
\[
\text{select E.name} \\
\text{from A.employee as E} \\
\text{where E.name not in} \\
\text{(select W.name from B.all_workers as W} \\
\text{where W.name is not null)} \\
\] * EXTRA CREDIT if add this line \\

4. Some comparisons of different approaches to do multi-valued foreign key dependencies. Any of
these or some different but meaningful comparison is fine for grading.

<table>
<thead>
<tr>
<th>Solution 1</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>· can short-circuit evaluate (stop once true)</td>
<td>· implementation is transparent</td>
</tr>
<tr>
<td>· fast if the evaluation favors the “better” relation first</td>
<td>· view can be materialized or on-the-fly</td>
</tr>
<tr>
<td>· no extra space needed</td>
<td>· materialized takes space</td>
</tr>
<tr>
<td>· on-the-fly evaluation needed</td>
<td>· indexed view can be speedy</td>
</tr>
<tr>
<td>· can be time consuming if we have to sequentially search both relations for key</td>
<td>· on-the-fly view does not necessarily allow short-circuit evaluation</td>
</tr>
<tr>
<td></td>
<td>· modular, clean, clear, reusable</td>
</tr>
</tbody>
</table>

5. a) company(fname, minit, lname, ssn, bdate, address, sex, salary, superssn, dno)

b) 0 (zero) records

c) * Asterisk means they are a manager.

 John Smith
 * Franklin Wong
 Alicia Zelaya
 * Jennifer Wallace
 Ramesh Narayan
 Joyce English
 Ahmad Jabbar
 * James Borg

d) John Smith
 Alicia Zelaya
 Ramesh Narayan
 Joyce English
 Ahmad Jabbar

e) James Borg is the problem, his supperssn is null. add: where superssn is not null
f) unknown (false is ½ points)
6. select r1.x, r2.y, r2.z, 3
 from R as r1, R as r2, R as r3
 where r1.x = r3.z AND
 r1.y = r2.x AND
 r1.z = r2.y AND
 r1.y = r3.y AND
 r2.z = r3.z*1.05 AND
 r3.x = 3