Lecture 4

Human-Centered Development

Three Approaches to UI Design

• Attitude of technology-centered development
 – Progress made by technological advances
 – The more bells & whistles the better

• Attitude of designer-centered development
 – Progress made by considering the intuitions of the designer
 – Imagining what the user will do and feel

• Attitude of human-centered development
 – Progress made by incorporating the users into the design process
 – Empirical studies integrated early into the design
Human-centered software development
(John Gould, IBM 1983)

- Definition
 - Early and Continued Focus on Users
 - Direct contact through interviews, observations, surveys, participative design in order to understand characteristics of users and their jobs
 - Integrated Design
 - All aspects of usability evolve in parallel; All aspects of usability under one focus or person
 - Early and Continued User Testing
 - Throughout development, intended users do real work with simulations and prototypes; their performance and reactions are measured qualitatively and quantitatively
 - Iterative Design
 - The system (functions, user interface, help system, training material, training approach) is modified based upon results of user testing; testing cycle is repeated

Iterative Model of Development

- Steps in method

1. Planning
 - Scope of project, investigate user population (document analysis, interviews, surveys, observation) & related systems
2. Requirements Analysis
 - Task analysis of existing system, scenario development
 - Requirements for usefulness (functionality) and usability
3. Design (Presentation & Interaction Design)
 - Specifications (yes?) for human-computer interaction (UI)
4. Implementation (Prototyping)
 - Storyboards, mock-ups, initial prototypes
5. Usability Evaluation
 - Evaluation without users: cognitive walkthrough, heuristic evaluation (guidelines), GOMS, Keystroke Level Model (KLM)
 - Evaluation with users (usability testing, interviews, questionnaires)
Step 1: Planning

- Scope of project
 - Time frame
 - Costs and other resources
 - Purpose
 - Context
- Gathering information about needed system
 - Prior and related systems
 - User studies
 - Who are the users?
 - What should the system do?
 - User needs
 - User constraints

User Studies

How do you get user information?

- Artifact analysis
- Interviews
- Observation
- Participation
- Survey/Questionnaire
Artifact Analysis

- Collect and examine the documents, objects and other resources that people use in their activities
- Try to understand the content of the information and the role it plays in activities

Interviews

- Advantages
 - Gathers opinion, Creates rapport
- Disadvantages
 - Must be well-planned
 - Bias: Information often filtered
- Types
 - Structured
 - Fixed set of questions with simple answers
 - Unstructured
 - More open questions

Observation

- Advantages
 - Not an opinion, but an objective record
 - Captures detail
- Disadvantages
 - Intrusive, Time consuming
- Types
 - Passive: “Hanging out”
 - Used in very early design when don’t have much information about user’s activities
 - Active
 - Provide users with problems to solve or tasks
Participation

- When the observer learns and participates in the work activities
- Overcomes the Hawthorne effect
 - Bias of being observed
- Obtain otherwise privileged information
- Creates first-hand domain knowledge

Survey/Questionnaire

- Purpose
 - Reaches lots of people
 - Perform statistical analysis on data
 - Avoids bias by anonymity
 - Consistent questions
- Design Issues
 - Must be carefully designed, do pilot
 - Must not be time-consuming & easy to reply
 - Must make sense
 - Must gather precise answers, not vague ones
 - Ask only questions which support the design
 - Sample vs. population

Survey: Good Example
Step 2: Requirements Analysis

- What is a requirement?
 - What the system will do, not how
 - Captures constraints as well
 - Types of requirements
 - User Functions: what the user can do
 - Usability: combines functions with usability measures
 - Other: hardware, software functions or constraints

Goals for requirements analysis

- **Ascertain the user’s needs**
 - Determine what tasks and subtasks must be carried out
 - Include tasks which are only performed occasionally. Common tasks are easy to identify.
 - Functionality must match need or else users will reject or underutilize the product

Getting User Requirements
Requirements

• Example: Rapid Transit Ticket Dispenser
 – Functional requirement: User must be able to purchase ticket
 – Usability requirement: User must be able to purchase simple ticket in under 2 minutes.
 – Functional requirement: Support for blind users.
 – Usability requirement: Blind user must be able to purchase simple ticket in under 4 minutes.
 – Functional requirement: User instructions should be in English and Spanish.
 – Usability requirement: User must be able to read instructions at 8th grade level.

Requirements as Tasks

• Example: Rapid Transit Ticket Dispenser
 – Function: Purchase ticket
 • Subfunction: Determine fare
 – Sub-subfunction: Give the destination
 – Sub-subfunction: Specify journey type, either one-way or round trip
 – Sub-subfunction: Receive quoted fare
 • Subfunction: Obtain ticket
 – Sub-subfunction: Pay the money
 – Sub-subfunction: Receive the ticket and any change due
 • NOTE: Hierarchical levels of abstraction
 • Task Analysis (Greenberg reading)

Step 3: Design

• Implements requirements (How system will work)
• Document proposed design as specification -- like a blueprint
 • Formalizes Design
 – Specification proposes the exact user interaction and presentation; leaves nothing to ad hoc decisions
 • Guides Implementation
 – Used to define the programming implementation
 » Widget types, Graphics and text, Error and help processing
 • Creates Communication
 – Represents the evolving design to the client and all members of the team
 • Evaluates design
 – completeness, correctness, consistency and performance times
Design Specification as a Task

- Example: Rapid Transit Ticket Dispenser
 - Function: Purchase ticket
 - Subfunction: Determine fare
 - Sub-subfunction: Give the destination
 - Sub-subfunction: Specify journey type, either one-way or round trip
 - Sub-subfunction: Receive quoted fare
 - Subfunction: Obtain ticket
 - Sub-subfunction: Pay the money
 - Sub-subfunction: Receive the ticket and any change due
 - Will be implemented as a network of dialog boxes on an ATM type machine (limited buttons, number keypad)

Design Specification Types

- Presentation specification
 - Initially low fidelity sketches progressing to screen shots

- Interaction specification
 - Describes the Tasks beginning with the core
 - Types
 - Narrative
 - Scenario
 -Storyboard
 - Network

A Picture Is Worth 1000 Words!
Interaction as Narrative

- **Definition**
 - Sentences describing the tasks: how the user accomplishes each functional requirement
- Reference within the text to a view of the presentation (screen)
- Can also represent tasks and actions as indented text
- Can include the context for the task and fictional users: scenario (Example in Greenberg reading)
- Can be used in user documentation for completed system

Interaction as Narrative

- **Example: Graphics editor**
 - To draw a Bezier curve, the user selects “Bezier” from the Draw menu (see Figure 1), and then chooses either “Point-to-point” or “Curve fit”. In point-to-point mode the user then clicks on positions in the drawing window. The system draws a Bezier curve fit to each point. (See Figure 2 for an example.)

![Figure 1](image)

Interaction as Storyboard

- **Definition**
 - a method developed by animators many years ago to design cartoons
- Storyboard shows the major “moments” in an animation as a sequence of pictures
- Storyboard can be used to show user interaction as a sequence of pictures of the screen
- May be annotated with comments
Storyboard Example: ATM Machine

- Type: Sequence of Screens
- Task: Fast Cash Money Withdrawal

ATM Screen 1a

The Exchange
Please insert your card
-face up-

ATM Screen 1b

The Exchange
Please insert your card
-face up-

Hello
Sarah Ann Douglas
Please enter your PIN
Press when done------>

Press Cancel if error made
ATM Screen 4
Select your transaction
Press cancel if error made
Fast Cash $40
Withdrawal
Balance
Next Selection

ATM Screen 8
Transaction being processed
Please wait

ATM Screen 5
Please remove your cash from tray
ATM Screen 6

Do you want another transaction?

Yes-------------->
No--------------->

ATM Screen 3

Please take card

Thank you!

ATM Screen 1

The Exchange
Please insert your card
-face up-
Beyond Storyboards to Interaction Networks

- Definition: Interaction network
 - Abstract representation of the interaction between the user input and the display
 - Augmented Transition Network (ATN)
 - Nodes
 - System response
 - Arcs
 - User action
 - Finite State machine

ATM Example

```
ATM Example

system response
user action
```

ATM Example

```
ATM Example

system response
user action
```
ATM Screen 2

Do you want more time?

Yes-------------------->
No------------------------>

ATM Example

Select Account for Balance inquiry

Press cancel if error made
Checking----------------->
Savings----------------->
Credit Card----------->
ATM Example

ATM Screen 9

Total
Available
$172.48

Press this key to continue

Example: Heartbeat
Heartbeat Main Menu

Example: Heartbeat

Heartbeat Set Preferences
Step 4: Implementation (Prototyping)

- Physical Storyboards
- Mock-ups
- Software prototypes

Step 5: Usability Evaluation

- Another whole lecture!