Lecture 17

Chapter 14 Information Search and Visualization

Information Search and Visualization

• Who earns > $50,000 among the residents of Eugene, Oregon?

Stages of Action in Human-Computer Interaction
Introduction

• Information activities:
 – Information gathering
 • Knowing where to look and availability
 • Searching versus Browsing
 – Filtering
 – Information evaluation
 • Is this what I want?
 – Information analysis and interpretation
 • Summarizing information
 • Comparing information

• Information activities are on-going, iterative tasks
 – Interruption and resumption
 – Trace of the information gathering tasks
 – Archiving and annotating

Introduction

• Problem: Huge volumes of computer-stored data available:
 – Databases
 • Textual-document libraries
 • Database on a server and a schema to describe the relations
 • Relations have records
 • Records have fields, and fields have values
 • Set of items (10 to 100,000)
 – Structured relational databases
 • Relations and fields have values
 • Set of items (10 to 100,000)
 – Multimedia document libraries
 – Digital and text are more loosely organized
 – Directly usable information
 – Websites
 • Contains network of websites with network of web pages
 • Contains information resources
 • Contains text, audio, graphics, video, programs
 – Websites and Databases: Data mining
 – Data warehouses and data marts
 – Knowledge networks or semantic webs

Introduction

BUT searching and discovering is difficult:

• Traditional interfaces have been difficult for novice users
 – Command Languages
 • Complex commands
 • Boolean operators
 • Unintuitive concept
 • EXAMPLE: SQL query language to relational databases

• Traditional interfaces have been inadequate for expert users
 – Difficulty in repeating searches across multiple databases
 – Weak methods for discovering where to narrow broad searches
 – Poor integration with other tools
Introduction

• Solution: Developing more powerful search and visualization methods, integration of technology with task
 – Searching in Textual Documents and Database Querying (Chapter 14.2)
 • From free-text HTML instead of SQL query language
 • Controllable word selection and displays using control panels
 – Design uses statistical frequency of occurrence of words to determine meaning
 – Multimedia Document Searches (Chapter 14.3)
 • Web recognition to picture searching
 – Advanced Filtering and Search Interfaces (Chapter 14.4)
 – Designers are just learning how to present large amounts of data in orderly and user-controlled ways (Chapter 14.5)
 • Information visualization

• Traditional information finding resources
 – Finding aids:
 • Table of contents, Indexes, Description introductions, Subject classification, Key-Word-In-Context (KWIC)
 – Preview and overview surrogates
 – Searching in structured relational database systems well established task using SQL command language
 – Users write queries that specify matches on attribute levels
 – Example of SQL command
 • SELECT DOCUMENT
 • FROM JOURNAL-DB
 • WHERE (Date >= and Date<= 1998)
 • and (Language = English or French)
 • and (publisher = ASIST or HFES or ACM).
 – SQL has powerful features, but it requires 2 to 20 hours training
 – Finding a way not to overwhelm novice users is a challenge

• New searching and querying interfaces
 – WWW search engines
 • Google, Yahoo, etc.
 • Natural language integration and text searching
 – Design uses statistical frequency of occurrence of words to determine meaning
 – WWW, Web search engines have greatly improved search performance by using statistical usage and the information in the site's hyperlink structure
 – WWW to Database interfaces
 • From free-text HTML instead of SQL query language
 • Controllable search options and displays using control panels
 – Evidence shows that users perform better and have higher satisfaction when they can view and control the search
Searching in textual documents and database querying

• Ethical problems

Searching in textual documents and database querying

• Searching & Querying User Interfaces: Basic tasks
 – Overview
 • Gain an overview of the entire collection
 • Adjoining detail view
 • The overview might contain a movable field-of-view box to control the contents of the detail view
 • Fisheye view
 – Zoom
 • Zoom in on items of interest
 • Allows a more detailed view
 • Particularly important for small displays
 – Filter
 • Filter out uninteresting items
 • Allows user to reduce size of search

Searching in textual documents and database querying

• User Interfaces: Basic tasks (cont.)
 – Details-on-Demand
 • Select an item or group and get details when needed
 • Useful to pinpoint a good item
 – Relate
 • View relationships among items
 • Use human perceptual ability – proximity, containment, connected line, color coding
 • Example: Set director’s name, and view all movies with that director
 – History
 • Keep a history to allow undo, replay, and progressive refinement
 • Allows a mistake to be undone, or a series of steps to be replayed
 – Extract
 • Extract the items or data
 • Save to file, print, or drag to another application
Searching in textual documents and database querying

- Example: ZFIN database
 - WWW Genetics database for zebrafish
 - Used by international research scientists
 - Developed at UO by S.Douglas (CS) and Monte Westerfield (Neuroscience Institute), 1994-2005

 <http://zfin.org>
 Search for gene "cox"
 Search for mutant "cyclops"

Multimedia document searches (Chapter 14.3)

- Searches for databases and textual documents are good, but multimedia searches are in a primitive stage
- Current multimedia searches require descriptive documents or metadata searches
- Search by date, text captions, or media is possible
- Useful to have computers perform some filtering
- New systems will incorporate powerful annotation and indexing, with better search algorithms and browsing

Multimedia document searches (Chapter 14.3)

- Image Search:
 - Finding photos with images such as the Statue of Liberty is a challenge
 - Query-by-Image-Content (QBIC) is difficult
 - Search by profile (shape of lady), distinctive features (torch), colors (green copper)
 - Use simple drawing tools to build templates or profiles to search with
 - More success is attainable by searching restricted collections
 - Search a vase collection
 - Find a vase with a long neck by drawing a profile of it
 - Critical searches such as fingerprint matching requires a minimum of 20 distinct features
 - For small collections of personal photos effective browsing and lightweight annotation are important
Multimedia document searches (Chapter 14.3)

• **Map Search**
 - On-line maps are plentiful
 - Search by latitude/longitude is the structured-database solution
 - Today’s maps are allowing utilizing structured aspects and multiple layers
 - City, state, and site searches
 - Flight information searches
 - Weather information searches
 - Example: www.mapquest.com
 - Mobile devices can allow “here” as a point of reference

• **Design/Diagram Searches**
 - Some computer-assisted design packages support search of designs
 - Allows searches of diagrams, blueprints, newspapers, etc.
 - E.g. search for a red circle in a blue square or a piston in an engine
 - Document-structure recognition for searching newspapers
 - Example: search for a red circle in a blue square or a piston in an engine

• **Sound Search**
 - MIR supports audio input
 - Search for phone conversations may be possible in future on speaker-independent basis

• **Video Search**
 - Provide an overview
 - Segmentation into scenes and frames
 - Support multiple search methods
 - Infomedia project

• **Animation Search**
 - Prevalence increased with the popularity of Flash
 - Possible to search specific animations like a spinning globe
 - Search for moving text on a black background

Advanced filtering and search interfaces (Chap 14.4)

For advanced uses there are alternatives to form fillin query interfaces:

• Filtering with complex boolean queries
 - Problem with informal English, e.g. use of “and” and “or”
 - Flow diagrams, decision tables, and metaphor of water flowing have not worked
• Dynamic Queries - Adjusting sliders, buttons, etc and getting immediate feedback
 - “direct-manipulation” queries
 - Use sliders and other related controls to adjust the query
 - Get immediate (less than 100 msec) feedback with data
 - Dynamic HomeFinder and Blue Nile
 - Hard to update fast with large databases
• Query previews present an overview to give users information and the distribution of data and thereby eliminate undesired items
• Faceted metadata search
 - Integrates category browsing with keyword searching
 - Flameco
Interactive Graphics

Advanced filtering and search interfaces (Chap 14.4)

- **Collaborative Filtering**
 - Groups of users combine evaluations to help in finding items in a large database.
 - User “votes” and/or his info is used for rating the item of interest.
 - E.g., a user rating sex restaurants highly is given a list of restaurants also rated highly by those who agree the sex are good.

- **Multilingual searches**
 - Current systems provide rudimentary translation searches.
 - Proposals of systems with specific dictionaries and more sophisticated translation.

- **Visual searches**
 - Specialized visual representations of the possible values.
 - E.g., dates on a calendar or seats on a plane.
 - On a map, the location may be more important than the name.
 - Implicit initiation and immediate feedback.

Information visualization (Chapter 14.5)

- **Information visualization Definition**
 - Use of interactive visual representations of abstract data to amplify cognition.
 - Categorical variables and the discovery of patterns, trends, clusters, outliers, and gaps.
 - Innovative ways of visualizing the data.

- **Compare to Scientific visualization**
 - Continuous variables, volumes, and surfaces.
3D Histogram

Who earns > $50,000?

Tree Map Visualization

How a Tree Map Works

http://www.hivegroup.com/
Summary

Problem: Huge volumes of computer-stored data available
- Databases
 - Structured relational Databases
 - Multimedia document libraries
- Websites
- Websites and Databases: Data mining

BUT searching and discovering is difficult:
- Traditional interfaces have been difficult for novice users
- Traditional interfaces have been inadequate for expert users
 - Difficult to repeat queries across multiple databases
 - Weak methods for discovering where to narrow broad searches
 - Poor integration with other tools

Solution: Developing more powerful search and visualization methods, integration of technology with task
- Searching in Textual Documents and Database Querying (Chapter 14.2)
- Multimedia Document Searches (Chapter 14.3)
- Advanced Filtering and Search Interfaces (Chapter 14.4)
- Designers just learning how to present large amounts of data in orderly and user-controlled ways (Chapter 14.5)
 - "Information Visualization"