Lecture 12

Interaction Devices

9.2 Keyboards

9.3 Pointing Devices

Keyboard Layouts

Where should the keys go?

- **Speed of Performance Issues**
 - **QWERTY layout**
 - Basically a random layout
 - Standard in use and taught extensively
 - **Dvorak layout**
 - Based on frequency of letters in words and minimizing finger travel
 - Faster than QWERTY
 - Reduces finger travel distances by at least one order of magnitude
 - Actual performance varies only a bit from study to study
 - Dvorak layout takes advantage of the dedicated efforts of some devotees
 - It takes about 1 week of regular typing to make the switch, but most users have been unwilling to invest the effort
 - **Chorded layouts (more than one key pressed at a time)**
 - Very fast
 - Hard to learn

Keyboard Layouts (cont.)

- **Learning Issues**
 - **ABCDE style**
 - 26 letters of the alphabet laid out in alphabetical order non-types will find it easier to locate the keys
 - **IBM PC keyboard**
 - Backslash key where most typists expect shift key
 - Placement of several special characters near the enter key

- **Repetitive Strain Injury Issues**
 - Number pad layout
 - Wrist and arm placement
 - Minimizing movement actually causes RSI
 - Semi-circular designs for keyboard
Keyboard 2003

- Adesso Tru Form USB Touchpad & Keyboard
- Note contoured “ergonomic” shape

Keyboard Layouts (cont.)

- Function keys
 - Learning issues
 - Typically simply labeled F1, F2, etc., though some may also have meaningful labels, such as CUT, COPY, etc.
 - Users must either remember each key’s function, identify them from the screen’s display, or use a template over the keys in order to identify them properly
 - Meaning of each key can change with each application
 - Speed of performance issues
 - Can reduce number of keystrokes and errors
 - Placement on keyboard can affect efficient use because whole hand moves
 - Frequent movement between keyboard home position and mouse or function keys can be disruptive to use
 - Alternative: use closer keys (e.g., ALT or CTRL) and one letter to indicate special function
 - Feedback (Error Rate)
 - Lights next to keys used to indicate availability of the function, or on/off status

Keyboard Layouts (cont.)

- Keyboard and keypads for small devices
 - Wireless or foldable keyboards
 - Virtual keyboards
 - Cloth keyboards
 - Soft keys
 - Pens and touchscreens
Keying for small devices: Fastap

- http://www.digitwireless.com/
- Letter keys raised above number keys
- Note: position of keys varies; 3rd device’s small trackball

Keying Speeds

- Seconds/stroke
 - Best: 0.060
 - Average touch typist typing text: 0.158 - 0.231
 - Typing random letter: 0.462 - 0.500
 - Unskilled typing of text: 1.154
- For UI modeling, for a single key press: 0.200
Pointing Devices

- Joystick (invented 1940’s)
- Trackball (invented 1940’s)
- Digitizing Tablet (invented 1960’s)
- Mouse (invented 1967)
- Touch Screen (invented 1971)
- Eye Tracker (invented 1980’s)
- Brain Activity Sensors (invented 1990’s)
- Haptic (touch) sensing 3D device (invented mid-1990’s)

Mouse 2003

- Microsoft
- Wireless, optical
- Note ergonomic shape, integrated scrollbar

Tablet

- Wacom Intuos2
- Drawing surface as well as control
Touch Screen

- No learning required; good for children
- Walk-up and use situations
- Finger activation requires large space for button
- Can be stylus activated such as PDA

Multi-Touch Interaction

Research - Jeff Han

- Bi-manual, multi-point, and multi-user interactions on a graphical interaction surface
 - force-sensitive
 - table style implementation measures 36"x27"
 - rear-projected sensing resolution of better than 0.1" at 50Hz
- http://mrl.nyu.edu/~jhan/ftirtouch

Finger Touchpad

- Portable computer: Apple Powerbook G3
- Button below touchpad
Joystick 2003

- Logitech WingMan Joystick
- Note multiple controls and ergonomic shape

Finger Joystick

- Portable computer: IBM Trackpoint II on IBM laptop computers
- Isometric joystick

Joystick - Mouth

- Special accessibility: Infogrip Quadjoy
- Isometric joystick controlled by mouth, selection by sip and puff switch
Head Mouse

- Special accessibility: Infogrip Headmaster plus
- Move head to move cursor, puff on tube to select

Footmouse

- Special accessibility: Hunter Digital "No Hands" Mouse
- Left pedal for mouse clicks, right for cursor movement

Eye Tracker

- Special accessibility: Eye aRe glasses
- Detects simple eye movement
Brain Tracker

- Special accessibility: EEG system
- 22.0 seconds on average to select a letter

SpaceBall

- Spaceball
- Move or rotate 3D by gently pushing, pulling or twisting the ball. Cursor then moves in the direction of the force or twist applied.
3D Haptics Device

- 3D control + touch display: SensAble PHANToM
- Commercially available

Telesurgery with Haptics

How do we know which device is best?

- Tasks
 - Pointing
 - Dragging
 - Typing/Pointing (Mode Switching)
 - Drawing
- Performance Measures (ISO 9241, Part 9)
 - Learning time
 - Practiced performance time
 - Accuracy (error rate)
 - Satisfaction of use
 - Fatigue and strain
Fitts Law

\[Time_{\text{position}} = a + b \log_2(Distance + Width + 0.5) \]

Limbs that follow Fitts Law

- Eyes
 - Abrams et al., 1999
 - Warr and Miklofitz, 1987
- Head / Neck
 - Andres & Hartung, 1989; Jagacinski & Monk, 1989
- Arm
 - Fitts, 1954
 - Fitts & Peterson, 1964
 - Langolf, 1974
- Wrist
 - Meyer et al., 1988
 - Crossman & Goodeve, 1983/1963
- Fingers
 - Langolf, 1974
- Feet
 - Drury, 1975
 - Hoffman, 1991

Fitts Pointing Task on the Computer

Score = 1106
Number of error free attempts = 12
You took 1109 milliseconds
Pointing Time: Skilled Users

(Douglas & Mithal, 1997)

<table>
<thead>
<tr>
<th>Device</th>
<th>Task</th>
<th>Time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse</td>
<td>Dragging Mode Switching</td>
<td>800</td>
</tr>
<tr>
<td>Key</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Joystick</td>
<td></td>
<td>1200</td>
</tr>
<tr>
<td>Touchpad</td>
<td></td>
<td>1400</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>1600</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>1800</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>2000</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>2200</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>2400</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>2600</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>2800</td>
</tr>
<tr>
<td>Trackball</td>
<td></td>
<td>3000</td>
</tr>
</tbody>
</table>

Comparing Device Pointing Times

- Fitts Law applies to computer pointing devices and prediction:
 Pointing time = a + b log2 (D/W + .5)
 - Mouse
 - a = 1.03; b = 0.66
 - Average pointing time approximately 1.1 sec (NOTE: This is about 5 times slower than typing)
 - Fastest and most accurate pointing device
 - Trackball
 - About 30% slower than mouse
 - Joystick
 - About twice as slow as the mouse
 - Touchpad
 - About 20% slower than the joystick

What is the best pointing device?

- Mouse is the superior device for pointing
 - Positioning time is faster overall, at every size/distance
 - Error rate significantly lower
 - Learning is the most rapid
 - Rate of movement nearly maximal with respect to hand/eye coordination (Fitts Law)
- Semantics of mouse actions integrated into OS
 - one, two, three button mouse
 - single, double, triple clicking; dragging
 - Menu functions: pull-down, pop-up, hierarchical
- When is the mouse not the superior device?
- Other variables
 - Other tasks: drawing
 - Cost, durability, space requirements, weight
 - Likelihood to cause repetitive-strain injury
 - Compatibility with other systems