Assignment 2

due Monday, January 24, 2005

1. (Horner’s Rule) Exercise 2.3, part a only. [3 points]

2. Suppose that \(A \) is an array of integers, indexed 1 to \(n \). Our goal is to compute the prefix sums of \(A \), storing the result in \(B \). These are defined as

\[
\]

The following simple code will compute the prefix sums

```plaintext
for i=1 to n
  for j = i to n
```

What is the running time of this algorithm? (Use big-Oh notation.) [4 points]

3. What is the running time for the following code, which multiplies two \(n \times n \) matrices \(A \) and \(B \), storing the result in \(C \)? [4 points]

```plaintext
for i=1 to n
  for j=1 to n {
    C[i,j] = 0
    for k=1 to n
      C[i,j] = C[i,j] + A[i,k]*B[k,j]
  }
```

4. Determine the run times of the following two pieces of code, which do pretty much nothing. [6 points]

```plaintext
sum =0
for i = 1 to n
  for j=1 to i*i
    sum += i*j
```

and

```plaintext
sum =0
for i = 1 to n*n
  for j=1 to i
    sum += i*j
```
5. Show that \(\sum_{i=1}^{n} \lceil \log i \rceil = \Theta(n \log n) \). Do this directly, without recourse to Stirling’s approximation [6 points]

6. Suppose that each row of an \(n \times n \) array \(A \) consists of 1’s and 0’s in such a way that, for any row, all the 1’s come before any 0. Assuming that \(A \) is already in memory, describe how to find which row of \(A \) which contains the most 1’s. Aim to do this in \(O(n) \) time, not \(O(n^2) \). [6 points]

7. Occasionally, multiplying the sizes of nested loops can give an over-estimate for the big-O running time. This happens when an innermost loop is infrequently executed. With this in mind, determine the running time of the following piece of code. [8 points]

\[
\text{for(int i = 0; i < n; i++)}
 \text{for(int j = 0; j < i * i; j++)}
 \text{if(j \% i == 0)}
 \text{for(int k = 0; k < j; k++)}
 \text{sum++;
}
\]

8. Describe a non-recursive method for finding, by link hopping, the middle node of a singly-linked list. This method must use only link hopping; it cannot use a counter. What is the running time of your method? [4 points]

9. (Reverse a linked list in constant space) Exercise 10.2-7, p 209 [8 points]

10. Describe how to implement the stack ADT using two queues. What is the running time of the push() and pop() methods in this case? [6 points]

Total: 55 points