Chapter 2: Computer-System Structures

- Computer System Operation
- I/O Structure
- Storage Structure
- Storage Hierarchy
- Hardware Protection
- General System Architecture

Computer-System Operation

- I/O devices and the CPU can execute concurrently.
- Each device controller is in charge of a particular device type:
 - Each device controller has a local buffer.
 - I/O is from the device to local buffer of controller.
- Device controller informs CPU that it has finished its operation by causing an interrupt.

Common Functions of Interrupts

- Interrupt transfers control to the interrupt service routine through the interrupt vector, which contains the addresses of all the service routines.
- Interrupt architecture must save the address of the interrupted instruction.
- Incoming interrupts are disabled while another interrupt is being processed to prevent a lost interrupt.
- A trap is a software-generated interrupt caused either by an error or a user request.
- An operating system is interrupt driven.

Interrupt Time Line For a Single Process Doing Output

- After I/O starts, control returns to user program only upon I/O completion.
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.
- After I/O starts, control returns to user program without waiting for I/O completion.
 - System call – request to the operating system to allow user to wait for I/O completion.
 - Device-status table contains entry for each I/O device indicating its type, address, and state.
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.

I/O Structure

- After I/O starts, control returns to user program only upon I/O completion.
 - Wait instruction idles the CPU until the next interrupt
 - Wait loop (contention for memory access)
 - At most one I/O request is outstanding at a time, no simultaneous I/O processing.
- After I/O starts, control returns to user program without waiting for I/O completion.
 - System call – request to the operating system to allow user to wait for I/O completion.
 - Device-status table contains entry for each I/O device indicating its type, address, and state.
 - Operating system indexes into I/O device table to determine device status and to modify table entry to include interrupt.
Two I/O Methods

- **Synchronous**
 - Requesting process
 - Device driver
 - Hardware
 - Data transfer

- **Asynchronous**
 - Requesting process
 - Device driver
 - Hardware
 - Data transfer

Device-Status Table

- Device: card reader 1
- Device: disk unit 1
- Device: disk unit 2
- Device: disk unit 3

Device-controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.

Or vice versa.

Only one interrupt is generated per block, rather than one interrupt per byte.

Direct Memory Access Structure

- Used for high-speed I/O devices
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention.
 - Or vice versa.
- Only one interrupt is generated per block, rather than one interrupt per byte.

Storage Structure

- Main memory – only large storage media that the CPU can access directly.
- Secondary storage – extension of main memory that provides large nonvolatile storage capacity.
 - Magnetic disks – rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors.
 - The disk controller determines the logical interaction between the device and the computer.

Storage Hierarchy

- Storage systems organized in hierarchy.
 - Speed
 - Cost
 - Volatility
- Caching – copying information into faster storage system; main memory can be viewed as a cache for secondary storage.
Storage-Device Hierarchy

Caching

- Use of high-speed memory to hold recently-accessed data.
- Requires a cache management policy.
- Caching introduces another level in storage hierarchy. This requires data that is simultaneously stored in more than one level to be consistent.

Migration of Integer A From Disk to Register

Hardware Protection

- Dual-Mode Operation
- I/O Protection
- Memory Protection
- CPU Protection

Dual-Mode Operation

- Sharing system resources requires operating system to ensure that an incorrect program cannot cause other programs to execute incorrectly.
- Provide hardware support to differentiate between at least two modes of operations:
 1. User mode – execution done on behalf of a user.
 2. Monitor mode (also kernel mode or system mode) – execution done on behalf of operating system.

Dual-Mode Operation (Cont.)

- Mode bit added to computer hardware to indicate the current mode: monitor (0) or user (1).
- When an interrupt or fault occurs hardware switches to monitor mode.

Privileged instructions can be issued only in monitor mode.
I/O Protection

- All I/O instructions are privileged instructions.
- Must ensure that a user program could never gain control of the computer in monitor mode
 - (E.g., a user program that, as part of its execution, stores a new address in the interrupt vector).

Use of A System Call to Perform I/O

Memory Protection

- Must provide memory protection at least for the interrupt vector and the interrupt service routines.
- In order to have memory protection, add two registers that determine the range of legal addresses a program may access:
 - Base register – holds the smallest legal physical memory address.
 - Limit register – contains the size of the range
- Memory outside the defined range is protected.

Use of A Base and Limit Register

Hardware Address Protection

Hardware Protection

- When executing in monitor mode, the operating system has unrestricted access to both monitor and user’s memory.
- The load instructions for the base and limit registers are privileged instructions.
CPU Protection

- Timer -- interrupts computer after specified period to ensure operating system maintains control.
 - Timer is decremented every clock tick.
 - When timer reaches the value 0, an interrupt occurs.
- Timer commonly used to implement time sharing.
- Timer also used to compute the current time.
- Load-timer is a privileged instruction.

Network Structure

- Local Area Networks (LAN)
- Wide Area Networks (WAN)

Local Area Network Structure

Wide Area Network Structure