Memories in General

- Computers have mostly RAM
- ROM (or equivalent) needed to boot
- ROM is in same class as Programmable Logic Devices (PLDs), in which are also FPGAs
 - Lots of memories in these devices
Properties of Memory

• **Volatile**
 ♦ Memory disappears if power goes out
 • Typical computer RAM
 • Palm

• **Nonvolatile**
 ♦ ROM
 ♦ Flash memories
 ♦ Magnetic memories like disk, tape
Random Access Memories

• So called because it takes same amount of time to address any particular part
 ♦ This is not quite true for modern DRAMs
Simple View of RAM

- Of some word size n
- Some capacity 2^k
- k bits of address line
- Maybe have read line
- Have a write line
1K x 16 memory

• Variety of sizes
 ♦ From 1-bit wide

• Memory size specified in bytes
 ♦ This would be 2KB memory

• 10 address lines and 16 data lines
Writing

• Sequence of steps
 ♦ Setup address lines
 ♦ Setup data lines
 ♦ Activate write line
Reading

• Steps
 ♦ Setup address lines
 ♦ Activate read line
 ♦ Data available *after specified amt of time*
Chip Select

• Usually a line to *enable* the chip
• Why?

<table>
<thead>
<tr>
<th>Chip select CS</th>
<th>Read/Write R/W</th>
<th>Memory operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>×</td>
<td>None</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Write to selected word</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Read from selected word</td>
</tr>
</tbody>
</table>
Static vs Dynamic RAM

- **SRAM vs DRAM**
- **DRAM stores charge in capacitor**
 - Disappears over short period of time
 - Must be refreshed
- **SRAM easier to use**
 - Faster
 - More expensive per bit
 - Smaller sizes
Structure of SRAM

- Control logic
- One memory *cell* per bit
 - Cell consists of one or more transistors
 - Not really a latch made of logic
- Logic equivalent
Bit Slice

- Cells connected to form 1 bit position
- Word Select gates one latch from address lines
- Note it selects Reads also
- B (and B not) set by R/W, Data In and BitSelect
Bit Slice can Become Module

• Basically bit slice is a X1 memory

• Next
16 X 1 RAM
Row/Column

- If RAM gets large, there is a large decoder
- Also run into chip layout issues
- Larger memories usually “2D” in a matrix layout
16 X 1 as 4 X 4 Array

- Two decoders
 - Row
 - Column
- Address just broken up
- Not visible from outside
Realistic Sizes

• Imagine 256K memory as 32K X 8
• One column layout would need 15-bit decoder with 32K outputs!
• Can make a square layout with 9-bit row and 6-bit column decoders
SRAM Performance

- Current ones have cycle times in low nanoseconds (say 2.5ns)
- Used as cache (typically onchip or offchip secondary cache)
- Sizes up to 8Mbit or so for fast chips