Acknowledgements

☐ Portions of the lectures slides were adopted from:
 ☐ Chapters 8, 9, and 10
Outline

- Dense matrix algorithms
- Sorting algorithms
- Graph algorithms
Dense Matrix Algorithms

- Great deal of activity in algorithms and software for solving linear algebra problems
 - Solution of linear systems (Ax = b)
 - Least-squares solution of over- or under-determined systems (min ||Ax-b||)
 - Computation of eigenvalues and eigenvectors (Ax=λx)
 - Driven by numerical problem solving in scientific computation
- Solutions involves various forms of matrix computations
- Focus on high-performance matrix algorithms
 - Key insight is to maximize computation to communication
Solving a System of Linear Equations

- $Ax = B$

\[
\begin{align*}
& a_{0,0}x_0 + a_{0,1}x_1 + \ldots + a_{0,n-1}x_{n-1} = b_0 \\
& a_{1,0}x_0 + a_{1,1}x_1 + \ldots + a_{1,n-1}x_{n-1} = b_1 \\
& \vdots \\
& A_{n-1,0}x_0 + a_{n-1,1}x_1 + \ldots + a_{n-1,n-1}x_{n-1} = b_{n-1}
\end{align*}
\]

- Gaussian elimination
 - Forward elimination to $Ux = y$ (U is upper triangular)
 - Without or with partial pivoting
 - Back substitution to solve for x
 - Parallel algorithms based on A partitioning
Sequential Gaussian Elimination

1. procedure GAUSSIAN ELIMINATION (A, b, y)
2. Begin
3. for k := 0 to n - 1 do /* Outer loop */
4. begin
5. for j := k + 1 to n - 1 do
7. y[k] := b[k]/A[k, k];
8. A[k, k] := 1;
9. for i := k + 1 to n - 1 do
10. begin
11. for j := k + 1 to n - 1 do
13. b[i] := b[i] - A[i, k] x y[k];
15. endfor; /*Line9*/
16. endfor; /*Line3*/
17. end GAUSSIAN ELIMINATION
Computation Step in Gaussian Elimination

Rowwise Partitioning on Eight Processes

(a) Computation:

(i) \(A[k,j] := A[k,j] / A[k,k]\) for \(k < j < n\)

(ii) \(A[k,k] := 1\)

(b) Communication:

One-to-all broadcast of row \(A[k,*]\)
Rowwise Partitioning on Eight Processes

<table>
<thead>
<tr>
<th></th>
<th>P₀</th>
<th>P₁</th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>P₅</th>
<th>P₆</th>
<th>P₇</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(0.1)</td>
<td>(1.2)</td>
<td>(2.3)</td>
<td>(3.4)</td>
<td>(4.3)</td>
<td>(5.3)</td>
<td>(6.3)</td>
<td>(7.3)</td>
</tr>
<tr>
<td></td>
<td>(0.2)</td>
<td>(1.3)</td>
<td>(2.4)</td>
<td>(3.5)</td>
<td>(4.4)</td>
<td>(5.4)</td>
<td>(6.4)</td>
<td>(7.4)</td>
</tr>
<tr>
<td></td>
<td>(0.3)</td>
<td>(1.4)</td>
<td>(2.5)</td>
<td>(3.6)</td>
<td>(4.5)</td>
<td>(5.5)</td>
<td>(6.5)</td>
<td>(7.5)</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
<td>(1.5)</td>
<td>(2.6)</td>
<td>(3.7)</td>
<td>(4.6)</td>
<td>(5.6)</td>
<td>(6.6)</td>
<td>(7.6)</td>
</tr>
<tr>
<td></td>
<td>(0.5)</td>
<td>(1.6)</td>
<td>(2.7)</td>
<td></td>
<td>(4.7)</td>
<td>(5.7)</td>
<td>(6.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.6)</td>
<td>(1.7)</td>
<td></td>
<td></td>
<td></td>
<td>(5.7)</td>
<td>(6.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(6.7)</td>
<td></td>
</tr>
</tbody>
</table>

(c) Computation:

 for \(k < i < n \) and \(k < j < n \)

(ii) \(A[i,k] := 0 \) for \(k < i < n \)
2D Mesh Partitioning on 64 Processes

<table>
<thead>
<tr>
<th></th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(3,4)</td>
<td>(3,5)</td>
<td>(3,6)</td>
<td>(3,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

(a) Rowwise broadcast of $A[i,k]$ for $(k - 1) < i < n$

<table>
<thead>
<tr>
<th></th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

(b) $A[k,j] := A[k,j] / A[k,k]$ for $k < j < n$

<table>
<thead>
<tr>
<th></th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(4,4)</td>
<td>(4,5)</td>
<td>(4,6)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

(c) Columnwise broadcast of $A[k,j]$ for $k < j < n$

<table>
<thead>
<tr>
<th></th>
<th>(0,1)</th>
<th>(0,2)</th>
<th>(0,3)</th>
<th>(0,4)</th>
<th>(0,5)</th>
<th>(0,6)</th>
<th>(0,7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(1,2)</td>
<td>(1,3)</td>
<td>(1,4)</td>
<td>(1,5)</td>
<td>(1,6)</td>
<td>(1,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>(2,3)</td>
<td>(2,4)</td>
<td>(2,5)</td>
<td>(2,6)</td>
<td>(2,7)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Back Substitution to Find Solution

1. **procedure** BACK SUBSTITUTION \((U, x, y)\)
2. begin
3. for \(k := n - 1 \) downto 0 do /* Main loop */
4. begin
5. \(x[k] := y[k];\)
6. for \(i := k - 1 \) downto 0 do
7. \(y[i] := y[i] - x[k] \times U[i, k];\)
8. endfor;
9. end BACK SUBSTITUTION
Dense Linear Algebra (www.netlib.gov)

- Basic Linear Algebra Subroutines (BLAS)
 - Level 1 (vector-vector): vectorization
 - Level 2 (matrix-vector): vectorization, parallelization
 - Level 3 (matrix-matrix): parallelization
- LINPACK (Fortran)
 - Linear equations and linear least-squares
- EISPACK (Fortran)
 - Eigenvalues and eigenvectors for matrix classes
- LAPACK (Fortran, C) (LINPACK + EISPACK)
 - Use BLAS internally
- ScaLAPACK (Fortran, C, MPI) (scalable LAPACK)
Sorting Algorithms

- Task of arranging unordered collection into order
- Permutation of a sequence of elements
- Internal versus external sorting
 - External sorting uses auxiliary storage
- Comparison-based
 - Compare pairs of elements and exchange
 - $O(n \log n)$
- Noncomparison-based
 - Use known properties of elements
 - $O(n)$
Sorting on Parallel Computers

- Where are the elements stored?
 - Need to be distributed across processes
 - Sorted order will be with respect to process order

- How are comparisons performed?
 - One element per process
 - compare-exchange
 - interprocess communication will dominate execution time
 - More than one element per process
 - compare-split

- Sorting networks
 - Based on comparison network model
Single vs. Multi Element Comparison

- One element per processor

 $a_i \rightarrow a_j$
 a_i, a_j
 $a_j, a_i \quad \text{min}\{a_i, a_j\} \quad \text{max}\{a_i, a_j\}$

 Step 1
 Step 2
 Step 3

- Multiple elements per processor

 $1\ 6\ 8\ 11\ 13 \rightarrow 2\ 7\ 9\ 10\ 12$
 $1\ 6\ 8\ 11\ 13$
 $2\ 7\ 9\ 10\ 12$

 Step 1
 Step 2

 $1\ 2\ 5\ 7\ 8\ 9\ 10\ 11\ 12\ 13$
 $9\ 10\ 11\ 12\ 13$

 Step 3
 Step 4
Sorting Networks

- Networks to sort \(n \) elements in less than \(O(n \log n) \)
- Key component in network is a comparator
 - Increasing or decreasing comparator

![Comparator Diagrams](image)

- Comparators connected in parallel and permute elements
Sorting Network Design

- Multiple comparator stages
- Connected together by interconnection network
- Output of last stage is the sorted list
- $O(\log^2 n)$ sorting time
- Convert any sorting network to sequential algorithm
Bitonic Sort

- Create a **bitonic sequence** then sort the sequence
- Bitonic sequence
 - sequence of elements \(<a_0, a_1, ..., a_{n-1}>\)
 - \(<a_0, a_1, ..., a_i>\) is monotonically increasing
 - \(<a_i, a_{i+1}, ..., a_{n-1}>\) is monotonically decreasing
- Sorting using bitonic splits is called **bitonic merge**
- **Bitonic merge network** is a network of comparators
 - Implement bitonic merge
- Bitonic sequence is formed from unordered sequence
 - Bitonic sort creates a bitonic sequence
 - Start with sequence of size two (default bitonic)
Bitonic Sort Network

Unordered sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>10</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>20</td>
<td>20</td>
<td>9</td>
</tr>
<tr>
<td>0001</td>
<td>5</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>0010</td>
<td>9</td>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>0100</td>
<td>8</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>0101</td>
<td>12</td>
<td>14</td>
<td>8</td>
</tr>
<tr>
<td>0110</td>
<td>14</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>0111</td>
<td>90</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1000</td>
<td>0</td>
<td>90</td>
<td>40</td>
</tr>
<tr>
<td>1001</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>1010</td>
<td>40</td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td>1011</td>
<td>23</td>
<td>23</td>
<td>95</td>
</tr>
<tr>
<td>1100</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>1101</td>
<td>95</td>
<td>95</td>
<td>23</td>
</tr>
<tr>
<td>1110</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>1111</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>

Bitonic sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>5</td>
</tr>
<tr>
<td>0001</td>
<td>8</td>
</tr>
<tr>
<td>0010</td>
<td>9</td>
</tr>
<tr>
<td>0011</td>
<td>9</td>
</tr>
<tr>
<td>0100</td>
<td>10</td>
</tr>
<tr>
<td>0101</td>
<td>12</td>
</tr>
<tr>
<td>0110</td>
<td>14</td>
</tr>
<tr>
<td>0111</td>
<td>20</td>
</tr>
<tr>
<td>1000</td>
<td>95</td>
</tr>
<tr>
<td>1001</td>
<td>90</td>
</tr>
<tr>
<td>1010</td>
<td>60</td>
</tr>
<tr>
<td>1011</td>
<td>40</td>
</tr>
<tr>
<td>1100</td>
<td>35</td>
</tr>
<tr>
<td>1101</td>
<td>23</td>
</tr>
<tr>
<td>1110</td>
<td>18</td>
</tr>
<tr>
<td>1111</td>
<td>0</td>
</tr>
</tbody>
</table>
Bitonic Merge Network

Bitonic sequence

<table>
<thead>
<tr>
<th>Wires</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0010</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0011</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0100</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0110</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1001</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1010</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1011</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1100</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1101</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1111</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>20</td>
<td>95</td>
<td>90</td>
<td>60</td>
<td>40</td>
<td>35</td>
<td>23</td>
<td>18</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Sorted sequence

| 0 | 3 | 8 | 9 | 10 | 12 | 14 | 20 | 95 | 90 | 60 | 40 | 35 | 23 | 18 | 0 |

Lecture 9

CIS 631 - Parallel Processing
Parallel Bitonic Sort on a Hypercube

1. procedure BITONIC SORT (label, d)
2. begin
3. for i := 0 to d - 1 do
4. for j := i downto 0 do
5. if (i + 1)st bit of label = j th bit of label then
6. comp exchange max(j);
7. else
8. comp exchange min(j);
9. end BITONIC SORT
Parallel Bitonic Sort on a Hypercube (Last stage)

Step 1

Step 2

Step 3

Step 4
Bubble Sort and Variants

- Can easily parallelize sorting algorithms of $O(n^2)$
- Bubble sort compares and exchanges adjacent elements
 - $O(n)$ each pass
 - $O(n)$ passes
- Odd-even transposition sort
 - Compares and exchanges odd and even pairs
 - After n phases, elements are sorted
Odd-Even Transposition Sort

Unsorted

3 2 3 8 5 6 4 1
2 3 3 8 5 6 1 4
2 3 3 5 8 1 6 4
2 3 3 5 1 8 4 6
2 3 3 1 5 4 8 6
2 3 1 3 4 5 6 8
2 1 3 3 4 5 6 8
1 2 3 3 4 5 6 8
1 2 3 3 4 5 6 8

Sorted

Phase 1 (odd)
Phase 2 (even)
Phase 3 (odd)
Phase 4 (even)
Phase 5 (odd)
Phase 6 (even)
Phase 7 (odd)
Phase 8 (even)
Parallel Odd-Even Transposition Sort on Ring

1. procedure ODD-EVEN PAR\((n) \)
2. begin
3. \(id := \) process’s label
4. for \(i := 1 \) to \(n \) do
5. begin
6. if \(i \) is odd then
7. if \(id \) is odd then
8. compare-exchange \(\min(id + 1) \);
9. else
10. compare-exchange \(\max(id - 1) \);
11. if \(i \) is even then
12. if \(id \) is even then
13. compare-exchange \(\min(id + 1) \);
14. else
15. compare-exchange \(\max(id - 1) \);
16. end for
17. end ODD-EVEN PAR
Quicksort has average complexity of $O(n \log n)$

- Divide-and-conquer algorithm
 - Divide into subsequences where every element in first is less than or equal to every element in the second
 - Pivot is used to split the sequence
 - Conquer step recursively applies quicksort algorithm
Sequential Quicksort

1. procedure QUICKSORT \((A, q, r) \)
2. begin
3. if \(q < r \) then
4. begin
5. \(x := A[q]; \)
6. \(s := q; \)
7. for \(i := q + 1 \) to \(r \) do
8. if \(A[i] \leq x \) then
9. begin
10. \(s := s + 1; \)
11. swap\((A[s], A[i])\);
12. end if
13. swap\((A[q], A[s])\);
14. QUICKSORT \((A, q, s) \);
15. QUICKSORT \((A, s + 1, r) \);
16. end if
17. end QUICKSORT
Parallel Shared Address Space Quicksort

First Step

pivot = 7

P0 P1 P2 P3 P4
7 13 18 2 17 1 14 20 6 10 15 9 3 16 19 4 11 12 5 8

after local rearrangement

P0 P1 P2 P3 P4
7 2 18 13 1 17 14 20 6 10 15 9 3 4 19 16 5 12 11 8

after global rearrangement

Second Step

pivot = 5

P0 P1 P2 P3 P4
1 2 7 6 3 4 5 18 13 17 14 20 10 15 9 19 16 12 11 8

pivot = 17

P0 P1 P2 P3 P4
1 2 7 6 3 4 5 14 13 17 18 20 10 15 9 19 16 12 11 8

after local rearrangement

P0 P1 P2 P3 P4
1 2 3 4 5 7 6 14 13 17 10 15 9 16 12 11 8 18 20 19

after global rearrangement
Efficient Shared Address Space Quicksort

pivot selection

pivot=11

after local rearrangement

after global rearrangement

after local rearrangement

Solution

Lecture 9

CIS 631 - Parallel Processing
Bucket Sort and Sample Sort

- Bucket sort is popular when elements are uniformly distributed over an interval
 - Create m buckets and place elements in appropriate bucket
 - $O(n \log(n/m))$
 - If $m=n$, can use value as index to achieve $O(n)$ time

- Sample sort is used when uniformly distributed assumption is not true
 - Distributed to m buckets and sort each with quicksort
 - Draw sample of size s
 - Sort samples and choose $m-1$ elements to be splitters
 - Split into m buckets and proceed with bucket sort
Sample Sort

Initial element distribution

Local sort & sample selection

Sample combining

Global splitter selection

Final element assignment
Graph Algorithms

- Graph theory important in computer science
- Many complex problems are graph problems
- $G = (V, E)$
 - V finite set of points called vertices
 - E finite set of edges
 - $e \in E$ is an pair (u,v), where $u,v \in V$
 - Unordered and ordered graphs
Graph Terminology

- Vertex *adjacency* if \((u,v)\) is an edge
- *Path* from \(u\) to \(v\) if there is an edge sequence starting at \(u\) and ending at \(v\)
- If there exists a path, \(v\) is *reachable* from \(u\)
- A graph is *connected* if all pairs of vertices are connected by a path
- A *weighted* graph associates weights with each edge
- *Adjacency matrix* is an \(n \times n\) array \(A\) such that
 - \(A_{i,j} = 1\) if \((v_i,v_j) \in E\); 0 otherwise
 - Can be modified for weighted graphs (\(\infty\) is no edge)
 - Can represent as *adjacency lists*
Graph Representations

□ Adjacency matrix

□ Adjacency list

\[A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 0 \\
\end{bmatrix} \]
Minimum Spanning Tree

- A spanning tree of an undirected graph G is a subgraph of G that is a tree containing all the vertices of G.
- The minimum spanning tree (MST) for a weighted undirected graph is a spanning tree with minimum weight.
- Prim’s algorithm can be used:
 - Greedy algorithm
 - Selects an arbitrary starting vertex
 - Chooses new vertex guaranteed to be in MST
 - $O(n^2)$
 - Prim’s algorithm is iterative
Prim’s Minimum Spanning Tree Algorithm

1. procedure PRIM MST(V, E,w, r)
2. begin
3. VT := {r};
4. d[r] := 0;
5. for all v ∈ (V - VT) do
6. if edge (r, v) exists set d[v] := w(r, v);
7. else set d[v] := ∞;
8. while VT ≠ V do
9. begin
10. find a vertex u such that d[u] := min{d[v]|v ∈ (V - VT)};
11. VT := VT ∪ {u};
12. for all v ∈ (V - VT) do
13. d[v] := min{d[v],w(u, v)};
14. endwhile
15. end PRIM MST
Example: Prim’s MST Algorithm

(a) Original graph

(b) After the first edge has been selected
Example: Prim’s MST Algorithm

(c) After the second edge has been selected

(d) Final minimum spanning tree

\[
\begin{array}{ccccccc}
 & a & b & c & d & e & f \\
\hline
a & 0 & 1 & 3 & \infty & \infty & 3 \\
b & 1 & 0 & 5 & 1 & \infty & \infty \\
c & 3 & 5 & 0 & 2 & 1 & \infty \\
d & \infty & 1 & 2 & 0 & 4 & \infty \\
e & \infty & \infty & 1 & 4 & 0 & 5 \\
f & 2 & \infty & \infty & \infty & 5 & 0 \\
\end{array}
\]
Parallel Formulation of Prim’s Algorithm

- Difficult to perform different iterations of the while loop in parallel because $d[v]$ may change each time
- Can parallelize each iteration though
- Partition vertices into p subsets $V_i, i=0,\ldots,p-1$
- Each process P_i computes

 $$d_i[u] = \min \{d_i[v] \mid v \in (V-V_T) \cap V_i\}$$

- Global minimum is obtained using all-to-one reduction
- New vertex is added to V_T and broadcast to all processes
- New values of $d[v]$ are computed for local vertex
- $O(n^2/p) + O(n \log p)$ (computation + communication)
Partitioning in Prim’s Algorithm

(a) $d[1..n]$

(b) A

Processors 0 1 i $p-1$
Single-Source Shortest Paths

- Find *shortest path* from a vertex \(v \) to all other vertices
- The shortest path in a weighted graph is the edge with the minimum weight
- Weights may represent time, cost, loss, or any other quantity that accumulates additively along a path
- Dijkstra’s algorithm finds shortest paths from a vertex \(s \)
 - Similar to Prim’s MST algorithm
 - Incrementally finds shortest paths in greedy manner
 - Keep track of minimum cost to reach a vertex from \(s \)
 - \(O(n^2) \)
Dijkstra’s Single-Source Shortest Paths Algorithm

1. **procedure** DIJKSTRA SINGLE SOURCE SP(\(V, E,w, s\))
2. begin
3. \(V_T := \{s\}\);
4. **for** all \(v \in (V - V_T)\) **do**
5. if \((s, v)\) exists set \([v] := w(s, v)\);
6. else set \([v] := \infty\);
7. **while** \(V_T \neq V\) **do**
8. begin
9. find a vertex \(u\) such that \([u] := \min\{[v] | v \in (V - V_T)\}\);
10. \(V_T := V_T \cup \{u\}\);
11. **for** all \(v \in (V - V_T)\) **do**
12. \([v] := \min\{[v], [u] + w(u, v)\}\);
13. endwhile
14. end DIJKSTRA SINGLE SOURCE SP
Parallel Formulation of Dijkstra’s Algorithm

- Very similar to Prim’s MST parallel formulation
- Use 1D block mapping as before
- All processes perform computation and communication similar to that performed in Prim’s algorithm
- Parallel performance is the same
 - $O(n^2/p) + O(n \log p)$
 - Scalability
 - $O(n^2)$ is the sequential time
 - $O(n^2) / [O(n^2/p) + O(n \log p)]$
All Pairs Shortest Path

- Find the shortest path between all pairs of vertices
- Outcome is a $n \times n$ matrix $D=\{d_{i,j}\}$ such that $d_{i,j}$ is the cost of the shortest path from vertex v_i to vertex v_j
- Dijkstra’s algorithm
 - Execute single-source algorithm on each process
 - $O(n^3)$
 - Source-partitioned formulation (use sequential algorithm)
 - Source-parallel formulation (use parallel algorithm)
- Floyd’s algorithm
 - Builds up distance matrix from the bottom up
Floyd’s All-Pairs Shortest Paths Algorithm

1. **procedure** FLOYD ALL PAIRS SP(A)
2. **begin**
3. \[D^{(0)} = A; \]
4. **for** \(k := 1 \) **to** \(n \) **do**
5. **for** \(i := 1 \) **to** \(n \) **do**
6. **for** \(j := 1 \) **to** \(n \) **do**
7. \[d^{(k)}_{i, j} := \min \{ d^{(k-1)}_{i, j}, d^{(k-1)}_{i, k} + d^{(k-1)}_{k, j} \}; \]
8. **end** FLOYD ALL PAIRS SP
Parallel Floyd’s Algorithm

1. procedure FLOYD ALL PAIRS PARALLEL (A)
2. begin
3. \[D^{(0)} = A; \]
4. for \(k := 1 \) to \(n \) do
5. forall \(P_{i,j} \), where \(i, j \leq n \), do in parallel
6. \[d^{(k)}_{i,j} := \min d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}; \]
7. end FLOYD ALL PAIRS PARALLEL
Next Class

☐ Algorithms for simulation
☐ Analytical modeling of parallel programs