Aim to do 5 problems. You may also choose up to two problems from previous assignments (provided that you did not do them already).

1. Let H be the language consisting of tuples $< x, 1^{2^n}, 1^s >$ so that x is a boolean string of length less than 2^n that is the prefix of some truth table of length 2^n whose corresponding boolean function cannot be computed by any circuit of size s. Show that H is in $\Sigma_2^P = NP$. (Very hard to parse, easy to do.)

2. Show that a graph is bipartite iff it has no odd length cycle. Use this to show that bipartite testing is in NL.

3. Show that the conversion of a number represented in balanced p-ary notation to binary notation is in NC^1.

4. A strong nondeterministic TM is one that has three possible halt states: "yes", "no", or "maybe". We say such a machine decides L in polynomial time if all computations run in polynomial time, and if the following holds: if $x \in L$, then all computations end up with "yes" or "maybe", and at least one ends up "yes". If $x \notin L$, then all computations end up in "no" or "maybe", but at least one ends up "no". Prove that L is decided by a strong nondeterministic TM in polynomial time iff $L \in NP \cap coNP$.

5. In fact, we say that A is strong-nondeterministically reducible to B, $A \leq_{SN}^B$, if $A \in NP^B \cap coNP^B$. Show that the set of \leq_{SN}-complete sets for NP is precisely HP^1.

6. A pattern is a string over the alphabet $\{0, 1, *\}$. A pattern π covers a string w if w can be obtained from π by replacing each occurrence of * in π with either a 0 or 1. (For example, 01** covers 0100, 0101, 0110, and 0111.) Define the problem PATTERN as follows: given a set Π of patterns, each of length n, determine if there exists a string s of length n such that no pattern in Π covers s. Show that PATTERN is NP-complete.

7. Let A be the set of properly nested parentheses. For example, ((())) is in A while ())(is not. Show that A in in L (log-space).

8. Show that if every NP-hard problem is also PSPACE-hard, then NP=PSPACE. (This is pretty easy.)

9. optional: Prove that $E = NC^2$. (This one might be hard.)

Comments:

- Recall from assignment 3 that $H_1^P = \{ A | \Sigma_2^P \subseteq NP^A \}$.
- \leq_{SN} forms a type of nondeterministic Turing reduction. A many–one analogue can be seen in the \leq^γ reductions mentioned in exercise 10.4.2, pp 235-236. You may replace the fourth problem above, with this one.