Performance

Definitions
Measurements
Software Tools
Reading

- Basic definitions: texts from CIS 314, CIS 629 (Hennessy, Patterson)

- Wilkinson & Allen, 2.3 - 2.4

- PDFs on-line:
 - paper on developing an efficient parallel application
 - MPICH Manual
 - has brief section on performance tools
 - TAU User’s Guide
 - UO research project; portable software for performance analysis
Wall Clock Time

- The simplest performance measurement: “wall clock time”
- Elapsed time from beginning to end of program execution
- Not the best metric for performance analysis: includes several components beyond the control of the application developer
 - O/S overheads (starting job, reading files, ...)
 - Multi-process environment
 - daemons (web server, NFS server, ...)
 - other users’ jobs
- If you use this metric:
 - gather data on a “lightly loaded” system
 - take mean of several measurements
CPU Time

- A common Unix utility: `time`

Usage:

```bash
% time X
```

Runs X, then prints elapsed time, CPU time in user process, CPU time in O/S routines on behalf of user process

```bash
% time ls -l
...output from "ls"...
real  0m0.117s
user  0m0.000s
sys   0m0.010s
```

- Same command, from `tcsh` (where `time` is a shell command):

```bash
0.000u 0.020s 0:00.11 18.1%
```
Bandwidth

- A different way to describe performance is bandwidth
 - also known as “throughput”

- Useful for describing parallel systems or other situations where several tasks are executed

- Elapsed time (aka “latency”) describes the amount of time required for a single job
 - unit: \(T \)

- Bandwidth describes the number of jobs that can be completed per unit of time
 - unit: \(1 / T \)
Example

- Suppose we have an N-Body application, and we need to simulate a system with 10,000 bodies
- We know it runs fine for 10 bodies, but are concerned it won’t scale to 10K bodies
- Methods to improve execution time (latency):
 - better algorithm
 - PP: 50,000,000 force calculations per time step
 - B-H: 130,000 * 3 = 390,000 forces per time step
 - more efficient data structures
 - reduce constant, but not asymptotic efficiency
 - vectors provide better instruction level parallelism
 - also better locality (caching)
Example (cont’d)

- Parallelism allows another possibility: improved bandwidth.
- A parallel algorithm breaks job into smaller pieces, works on the pieces in parallel.
- Our overall goal is still to have our program finish sooner, but now we have another way to approach the problem: optimize number of pieces completed per unit of time.
- Performance can be improved through better throughput:
 - more processors
 - smaller messages
 - faster delivery of messages
 - fewer messages
Example (cont’d)

- Suppose our machine is a Linux cluster with 10 nodes
 - parallel algorithm might have 1,000 bodies/node
 - chordal ring: each process computes 1,000,000 forces/msg*, or 5,000,000 forces per time step
 - parallel B-H: depends on how tree partitioned (see Fox, et al)

* all n x n interactions with bodies arriving on a token
Parallel Performance

- Wall clock time for the parallel program is a function of:
 - partitioning (can program be split into N even parts?)
 - parallel programming overhead (making, sending messages)
 - system overhead (time waiting for work)

Application parallel overhead

\[
T_s = \sum T_i \\
T_p = T_i + \text{overhead}
\]
Speedup

- Speedup is a measure of how much faster the parallel version runs.

\[S = \frac{T_s}{T_p} \]

- Example:

 \[T_s = 9.5 \text{ sec} \]
 \[T_p = 3.6 \]
 \[S = \frac{9.5}{3.6} = 2.63 \]
Amdahl’s Law

- Speedup is limited by the portion of the application that is inherently sequential.

- Let p be the portion that is not parallelizable.

\[
S = \frac{T_s}{T_p} = \frac{pT_s + (1 - p)T_s}{pT_s + (1 - p)T_s/N}
\]
Amdahl’s Law (cont’d)

The limit to S, as the number of processors N increases:

$$S = \frac{pT_s + (1 - p)T_s}{pT_s} = \frac{p + (1 - p)}{p} = \frac{1}{p}$$

inherently sequential
Amdahl’s Law (cont’d)

Example:

- if $p = 0.1$

$$S = 1/p = 10$$
Massive Parallelism

The term “massive parallelism” means the use of a very large number of processors
- coined by groups working on SIMD machines
- \(N > 1000 \)
- origin of the name “MasPar”

Is “massive parallelism” feasible, or cost-effective, given Amdahl’s law?
- are there problems where \(p < .001 \)?
- does overhead mean speedup of 1000 is impossible?
Massive Parallelism (cont’d)

- Major speedups are possible if one increases the problem size along with the number of processors
 - Gustafson: “you wouldn’t hire 1000 painters to paint a kitchen”

 - contains parts of Gustafson’s CACM paper “Reevaluating Amdahl’s Law”

- Describes simulation of 2D acoustic wave

- Speedups over 1000x on 1024-node NCUBE system
 - NCUBE: competitor to Intel’s iPSC hypercube
Measuring Performance

- **time** shell command
 - returns user time and system time for the process

- Unix library calls
 - O/S specific
 - call once to reset timer
 - call again to measure CPU time since previous call

- Example: `clock()`
 (code on next slide)
#include <time.h>

clock_t start = clock();

 // ... code to measure ...

clock_t end = clock();

float elapsed =
 (float(end) - float(start))/CLOCKS_PER_SEC;

cout << "time: " << elapsed << endl;
clock() Measurements

- `clock()`, `getrusage()`, and similar functions measure application time plus time spent in parallel libraries (e.g. MPI)

- Does not measure time a process is blocked, e.g. while it is waiting for an MPI message
Fine-Grain Measurements

- To improve single-processor performance, it’s necessary to know where the application is spending most of its time.

- An execution profile is a table showing the amount of CPU time in each function:
 - Reported as time and percent of total.
 - Table shows time in the function plus cumulative time in called functions.

- Many scientific applications follow the 90/10 rule:
 - 90% of time spent in 10% of code.
 - As measured by locality of reference for i-cache.
 - Especially true of applications that are candidates for SPMD.
Profiles

- Software that generates an execution profile typically uses PC sampling
 - interrupt the program periodically
 - every 100 instructions? 1000?
 - record location of program counter (CPU’s PC register)
 - write locations to a file

- Table produced by application that reads trace file
 - maps PC values back to source code function

- Slight overhead for sampling may skew results

- New software has lower overhead, doesn’t require linking with sampling library
Performance Profiles for Parallel Programs

- For parallel programs, we want to know not only how time is spent within a process (one node of an SPMD program)

- We also need to know about interprocess communication
 - time spent composing messages
 - waiting for messages
 - synchronization (e.g. at barriers, or in collective operations)

- One method: software library records events, as in execution profile, and graphic utility displays time line of processes and their interaction
Viewing Message Patterns

- A very early MPI-based tool: upshot
- Newer version, called jumpshot, uses Java

jumpshot window (from presentation by R. Lusk, ANL)
TAU

- TAU is a UO research project headed by Allen Malony
 - TAU = Tuning and Analysis Utilities
 - aka "tools are us"

- Platform-independent software to measure, analyze performance
- Supports sequential, MPI, and OpenMP applications
Next Lecture

- Topic for next time: TAU, and how to use it on IBM p655