Laplace’s Equation

Project #3
Model and discretization
Solution methods
Heat

- Energy (in the form of heat) flows from areas of high energy toward areas of lower energy
 - Example: metal plate
 - Flow is orthogonal to isothermal contours
 - Rate of flow depends on thermal conductivity of the material
Steady State

- If the temperatures at the boundaries are constant, temperatures at interior points will eventually reach a steady state.
Mathematical Model

A set of equations that describe heat flow:

\[q_x = -k \frac{\partial T}{\partial x} \]

- \(q \) is a symbol for flux
- \(k \) is the thermal conductivity constant
- flow is related to the change in temperature with respect to position
Laplace’s Equation

- The second derivative describes the change in flux:

\[
\frac{\partial q_x}{\partial x} = \frac{\partial^2 T}{\partial x^2} \quad \frac{\partial q_y}{\partial y} = \frac{\partial^2 T}{\partial y^2}
\]

- When the system is in a steady state the change in flux is zero:

\[
\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} = 0
\]

- heat is flowing, but at the same rate everywhere on the surface
- this second-order equation is Laplace’s equation
Boundary Value Problem

- In the previous lecture this model was introduced as an example of a boundary value problem.
 - values of temperature are known at boundaries
 - goal is to compute temperatures at internal points

- The basic method will be the same as in the advection model.
 - divide the domain into grid cells
 - derive a discrete form of the PDE model

- Big difference: we need a new algorithm.
 - advection is an initial value problem
 - explicit methods worked in that model
 - here we need an implicit method
Small Example

- To illustrate the implicit algorithms, we’ll use a very simple example*
 - Goal: a method for computing $T(i,j)$
 - Temperature at grid point (i,j)
 - Recall we use spatial coordinates, not array indices
 - $T(i,j)$: temp at $x = i$, $y = j$

Discretization

- A second-order difference approximation for Laplace’s equation:

\[
\frac{[T_{i+1,j} - 2T_{i,j} + T_{i-1,j}]}{(\Delta x)^2} + \frac{[T_{i,j+1} - 2T_{i,j} + T_{i,j-1}]}{(\Delta y)^2} = 0
\]

- begin with Taylor series
- expand to include second derivative
- this is a centered difference equation

- Note changes in \(x \) (top line) and changes in \(y \) (bottom line)
Equation for $T(i,j)$

- Rearrange so $T(i,j)$ is defined in terms of values at the other grid cells

\[
\frac{T_{i+1,j} - 2T_{i,j} + T_{i-1,j}}{(\Delta x)^2} + \frac{T_{i,j+1} - 2T_{i,j} + T_{i,j-1}}{(\Delta y)^2} = 0
\]

\[
T_{i,j} = \frac{(\Delta y)^2(T_{i+1,j} + T_{i-1,j}) + (\Delta x)^2(T_{i,j+1} + T_{i,j+1})}{4}
\]

- To make calculations easier, build a grid with $\Delta x = \Delta y$
- For the rest of the slides, assume $\Delta x = 1$

\[
T_{i,j} = \frac{[T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j+1}]}{4}
\]
Equations for Grid Points

\[T_{i,j} = \frac{[T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j+1}]}{4} \]

\[T_{1,1} = \frac{[0 + T_{2,1} + T_{1,2} + 0]}{4} \]
\[T_{1,2} = \frac{[0 + T_{2,2} + 1 + T_{1,1}]}{4} \]
\[T_{2,1} = \frac{[T_{1,1} + 0 + T_{2,2} + 0]}{4} \]
\[T_{2,2} = \frac{[T_{1,2} + 0 + 1 + T_{2,1}]}{4} \]
Matrix Form

- Rearrange each equation so the variables are on the left side
 - write variables in the same order, and line up the columns
 - move constants to the right side

\[
\begin{align*}
T_{1,1} &= [0 + T_{2,1} + T_{1,2} + 0] / 4 & 4T_{1,1} - T_{2,1} - T_{1,2} &= 0 \\
T_{1,2} &= [0 + T_{2,2} + 1 + T_{1,1}] / 4 & -T_{1,1} + 4T_{2,1} - T_{2,2} &= 0 \\
T_{2,1} &= [T_{1,1} + 0 + T_{2,2} + 0] / 4 & -T_{1,1} + 4T_{1,2} - T_{2,2} &= 1 \\
T_{2,2} &= [T_{1,2} + 0 + 1 + T_{2,1}] / 4 & -T_{2,1} - T_{1,2} + 4T_{2,2} &= 1
\end{align*}
\]
Matrix Form (cont’d)

- Now the problem can be written in the form of a matrix-vector product

\[
\begin{bmatrix}
4T_{1,1} & -T_{2,1} & -T_{1,2} \\
-T_{1,1} & +4T_{2,1} & -T_{2,2} \\
-T_{1,1} & +4T_{1,2} & -T_{2,2}
\end{bmatrix}
\begin{bmatrix}
T_{1,1} \\
T_{2,1} \\
T_{1,2}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\]

\[
\begin{bmatrix}
4 & -1 & -1 & 0 \\
-1 & 4 & 0 & -1 \\
-1 & 0 & 4 & -1 \\
0 & -1 & -1 & 4
\end{bmatrix}
\begin{bmatrix}
T_{1,1} \\
T_{2,1} \\
T_{1,2} \\
T_{2,2}
\end{bmatrix}
= \begin{bmatrix}
0 \\
0 \\
1 \\
1
\end{bmatrix}
\]
Solution

- Use Gaussian elimination ("row reduction") to find values of the variables that satisfy the equation

\[
\begin{bmatrix}
T_{1,1} & 0.125 \\
T_{2,1} & 0.125 \\
T_{1,2} & 0.375 \\
T_{2,2} & 0.375
\end{bmatrix}
\]
Time Complexity

- Gaussian elimination provides an exact value for each grid point, but it is expensive.

- With an $N \times N$ grid:
 - number of variables to solve for: $v = N^2$
 - time complexity: $O(v^2)$

- Each row will have at most four non-zero values
 - there are efficient algorithms for sparse matrices.
Iterative Methods

Another way to solve the system of equations is to use an iterative method

Our goal is to solve $A \cdot x = b$

- A is the coefficient matrix, normalized so the diagonal is all 1's
- x is the vector of variables
- b is the vector of constants

$$A = \begin{bmatrix} 1 & -.25 & -.25 & 0 \\ -.25 & 1 & 0 & -.25 \\ -.25 & 0 & 1 & -.25 \\ 0 & -.25 & -.25 & 1 \end{bmatrix}$$
Iterative Methods (cont’d)

- In an iterative method, start with an initial estimate of the solution
 - initial set of values for the variables: \(x^{(0)} \)

- Define two new matrices \(M \) and \(N \), so that

\[
M \cdot x^{(i+1)} = N \cdot x^{(i)} + b
\]

- Solve this equation for \(x^{(i+1)} \)

- With the right choice of \(M \) and \(N \) the new vector will be closer to the actual solution \(x^{(*)} \)

- Eventually the sequence will converge to the actual solution

\[
| x^{(i+1)} - x^{(i)} | < \varepsilon
\]
Jacobi Iteration

- In Jacobi’s method, split the coefficient matrix A into three parts:

\[
A = D + L + U
\]

- The iterative step is simple, because $D = I$

\[
Dx^{(i+1)} = (D - A)x^{(i)} + b
\]
Jacobi Iteration (cont’d)

- This matrix is for a tiny 2 x 2 grid

- For a larger problem, each interior point will have four neighbors, corresponding to four nonzero array entries.

- The general case:

\[
D - A = \begin{bmatrix}
0 & 0.25 & 0.25 & 0 \\
0.25 & 0 & 0 & 0.25 \\
0.25 & 0 & 0 & 0.25 \\
0 & 0.25 & 0.25 & 0
\end{bmatrix}
\]

\[
T_{i,j}^{(n+1)} = \frac{\left[T_{i-1,j}^{(n)} + T_{i+1,j}^{(n)} + T_{i,j-1}^{(n)} + T_{i,j+1}^{(n)} \right]}{4}
\]
Well, Duh

- What this new equation says is that the value at a grid cell is the average of the values at the neighboring cells

\[
T_{i,j}^{(n+1)} = \left[T_{i-1,j}^{(n)} + T_{i+1,j}^{(n)} + T_{i,j-1}^{(n)} + T_{i,j+1}^{(n)} \right] / 4
\]

- BUT:
 - this calculation is \textit{not a simulation of heat flow}
 - there is no time dimension
 - we don’t have a thermal conductivity to represent the rate of flow
 - this equation is part of an iterative solution of a system of linear equations
Other Iterative Methods

- Why Jacobi’s equation works, and the sorts of systems for which it eventually converges, is a topic for another class.

- Efficiency of iterative methods depends on the number of iterations.

- Other methods, requiring fewer iterations:
 - Gauss-Seidel
 - Selective Over-Relaxation (SOR)
 - See books on linear algebra or PDEs for more information (and for pointers to many other iterative methods).

- All use different forms of matrices M, N, but have the same basic structure.
Space Complexity

- There are two big advantages of iterative methods:
 - they use far less space
 - $O(n^2)$ for an $n \times n$ grid
 - compared to $O(n^4)$ for Gaussian elimination or other exact solution

- It is possible to get an approximate solution after a few iterations
 - in some situations an exact answer isn’t required
Outline

- Algorithm:
 - use two matrices, T^1 and T^2
 - put initial guesses (i.e. $x^{(0)}$) in T^1
 - repeat until $|T^1 - T^2| < \varepsilon$:
 - on odd steps, use T^1 to update T^2
 - on even steps, use T^1 to update T^2
To Be Continued...

Next time:

- efficient implementation in C++
- array allocation
- OpenMP for parallel implementations