CIS 455/555
Computational Science

Introduction
Course Outline
Projects
Course Information

- Instructor:
 John Conery
 conery@cs.uoregon.edu
 Office hours TBA

- Class website:
 http://www.cs.uoregon.edu/cis455

- Textbook:
 Parallel Processing
 Wilkinson and Allen
 Prentice Hall (2005)
What is Computational Science?

- **Short answer:**
 - the use of modeling and simulation in scientific research

- **Characterized by**
 - high performance computing (very big problems)
 - visualization
 - application to “real world” problems
What is Computational Science?

- Old answer:
 - “scientific computing” or “scientific programming”

- Typically referred to creation of software for scientific applications
 - development of new algorithms
 - e.g. methods for solving systems of linear equations
 - languages and libraries for scientific applications
 - e.g. FORTRAN90, Lapack, …
 - data analysis
 - post hoc number crunching
What is Computational Science?

Better answer:
- using computers to solve scientific problems
- “computational” is an adjective that describes the type of science

Common phrase: “three-legged stool”
- theoretical science: construction of abstract descriptions, mathematical models
- experimental science: characterized by physical measurements, laboratory models
- computational science: simulation, visualization, analysis based on computational models
Example: Mutational Meltdown

- Lynch, Conery, and Bürger (1994, 1995)
- Question: can mutations alone cause extinction in sexually reproducing populations?

- Background:
 - majority of mutations are harmful
 - in finite asexual populations (bacteria, yeast, other very small organisms) deleterious mutations build up over time
 - since offspring are clones of their mothers fitness declines steadily (“Muller’s ratchet”), extinction is inevitable
Mutational Meltdown (cont’d)

- For sexually reproducing organisms, recombination can “flush out” deleterious mutations
 - mutation occurs in germ cell of one parent
 - offspring will have one mutant, one wild gene
 - mutation may not be passed on to children
- “Random genetic drift” in small populations can lead to fixation
 - all offspring have two copies of mutated gene
- Simulation results:
 - mildly deleterious mutations will accumulate, eventually cause extinction
 - mean time to extinction increases exponentially with population size
Mutational Meltdown (cont’d)

- Experimental approach: grow populations in a lab
 - need fast-reproducing organisms, method for tracking mutations, controls for other factors
- Theoretical approach: analytical model to predict mean time to extinction as function of population size, mutation rate, etc
 - tractable for only very simple (e.g. asexual) populations
- Computational approach: individual-based modeling
 - simulate new generations from previous generations
 - add random mutations
 - update model for new situations, e.g. “age structure”, demographics, …
Numeric Solution vs *ab initio* Simulation

- The meltdown project is an example of *ab initio* simulation
 - application based on a simulation of real-world objects
 - results determined by final state of the system
 - other examples: N-body problem in astrophysics, molecular dynamics in computational biology

- Other projects involve numeric solutions of mathematical models
 - exact solution, e.g. by symbolic integration, is preferred
 - realistic systems might be too complex, so numeric methods are used
 - examples: systems of differential equations for fluid dynamics (hydrology, weather prediction, lava flows, …)
A common acronym for this field is CSE, for Computational Science and Engineering

- “CS” has been taken already…

Many of the methods of computational science carry over directly to computational engineering

- example: car crash simulations
- wire-frame model of car is similar to mesh used to compute fluid flow
- time-stepped evaluation of energy flow through mesh
Grand Challenges

- Computers have been widely used in science since the 1940’s
- CSE as a new discipline emerged in the late 1980’s
- Turning point: High Performance Computation and Communication Program (HPCC)
 - funded by US Congress in 1991
 - identified several “Grand Challenge” science and engineering problems that might be solved with the help of high performance computers
 - see “Overview of Scientific Computing” (Fosdick et al, 1994) and “Grand Challenges” (ITRD, 2003), both on line
Grand Challenges (cont’d)

- Examples of Grand Challenge research areas:
 - atmospheric modeling
 - weather prediction, storm-scale models
 - molecular dynamics
 - protein-DNA interactions; “rational drug design”
 - material science
 - development of superconducting materials
 - automotive engineering
 - car crash simulations (varying speeds, angles, road conditions, …)
 - more efficient engines
Informatics

- A growing area of CSE is related to Information Technology (IT)
- “Informatics” refers to management and use of large amounts of scientific information
 - scientific databases
 - PubMed
 - model organism databases in biology
 - advanced user interfaces and database query languages
 - ontology (knowledge representation)
 - federated databases
- Examples: bioinformatics, medical informatics, GIS, NASA’s earth-orbiting satellite (EOS), digital libraries, …
CSE @ UO

- Every science department at UO now has one or more computational science research projects
- Computational Science Institute
 - members from CS, Math, Physics, others
 - established 1995 to promote CSE research and campus resources
- Some CSE projects:
 - electronic structure of solids (Haydock)
 - models of lava flow (Cashman), geotomography (Toomey, Cuny)
 - neuroinformatics, brain imaging (Malony, Tucker, Nunnally)
 - neural networks and chemotaxis (Lockery, Conery)
 - ZFIN (Westerfield, Douglas)
Course Goals

- The main goal for this course is an understanding of CSE from a computer science perspective
 - high performance computer architecture
 - languages and libraries for parallel programming
 - algorithms and data structures commonly used in CSE applications
 - computer graphics for scientific visualization
 - databases and web interfaces
Deliverables

- Your responsibilities this term:
 - parallel programming projects
 - “hello world” (MPI warmup)
 - ab initio simulation (N-body project)
 - solution of differential equation (heat flow)
 - numeric optimization (TBD)
 - global grid service (Mandelbrot)
 - term paper
 - 455: report on current CSE project
 - 555: research paper
Course Outline

- Parallel Processing I
 - distributed computing; MPI

- N-Body Problems
 - molecular dynamics, force fields, astrophysics
 - Project 1: galaxy formation (C++ and MPI)

- Visualization
 - basic techniques; Matlab and/or R (use in writeups for all projects)

- Parallel Processing II
 - shared-memory multiprocessing; OpenMP
Course Outline (cont’d)

- Partial Differential Equations
 - grid construction, finite difference, finite element solvers
 - Project 2: Laplace’s equation (C++ and OpenMP)

- Optimization
 - hill-climbing, simulated annealing, genetic algorithms, gradient descent
 - Project 3: ??

- Databases and Servers
 - The Global Grid; GLOBUS toolkit; MPI-G2
 - Project 4: Mandelbrot server
Computing Resources

- New this term!
- IBM p690
 - 16 1.3GHz CPUs
 - 64GB RAM
 - 3rd floor Deschutes Hall
 - not available yet -- too hot :(
- Four IBM p655s
 - 8 1.5GHz CPUs
 - 32GB RAM
 - Neuroinformatics Center (RRP)
 - systems we’ll use for our course projects
Computing Resources (cont’d)

- Coming soon:
 - 8-node IBM JS20 cluster (Psych)
 - 2 CPUs per node
 - 4GB RAM per node
 - SGI “MARS” visualization server (CIS)
 - 16 CPUs
 - 8 graphics pipes
 - 16GB RAM
 - 5TB Storage Area Network (SAN) virtual file system (CIS)

- All systems use Linux O/S
Getting Started

- Read the first two chapters of the text
- Browse the course web site -- make sure you know where to find on-line documentation for MPI, OpenMP, etc
- Sign up for an account on the p655 system
 - if you don’t have one yet, get a CIS login
 - send me e-mail from your CIS account (or telling me your CIS login name)
 - a (semi-)automated process will create accounts on the p655
 - use ssh to connect, sftp to transfer files to/from CIS
- Log in and initialize your environment (.tcsh, .emacs, X, etc)
Project 1

- Due Fri Apr 9 (2 weeks from now)
- “Hello, World” in MPI on the p655
 - `main()` launches n processes
 - process 0 sends “hello i” to process i
 - each process prints its message when it receives it

- Download project tar file from the class web site
- Add a small amount of code, compile and test the program
- Submit new tar file by e-mail to conery@cs.uoregon.edu
Project 0

- Important!
- Send e-mail to conery@cs.uoregon.edu
 - your CIS login name
 - your nickname